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PREFACE
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ABSTRACT

Characterization of stress-deformation behavior of concrete

and rocks have been a subject of active research for a long time.

Linear elastic, nonlinear (piecewise) linear elastic, elastic-

plastic and endochronic models have been proposed and used by

various investigators and the literature on the subjects is very

wide. A review of various models together with their implemen-

tation is numerical (finite element) procedures is presented in

Ref. [77].

The primary objective of the present study is to develop

a generalized constitutive model based on the theory of plas-

ticity. Although such a model can be used for a wide range

of materials, in this dissertation its appli-ations to plain

concrete and rocks are emphasised.

One of the main objectives of this dissertation is to study

constitutive behavior of concrete and soapstone under multi-

axial load histories by using a truly triaxial or multiaxial

testing device. The truly triaxial device is capable of apply-

ing a general three-dimensional state of stress. Samples can

be tested along any three dimensional stress path. Therefore,

constitutive behavior of concrete and soapstone can be studied

under all possible states of stress.

xxxi
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xxxi i

The conventional, octahedrail, proportional loading and cir-

cular stress test series are conducted using the truly triaxial

cubical device. For meaningful results, samples with consistent

initial properties are essential. In order to produce samples

with uniform initial properties such as density, equipment

and procedures are developed to standardize the sample prepara-

tion process.

The test data is used to determine the material constants

associated with the proposed constitutive model. The model is

then verified by back-predicting the stress-strain curves

obtained from the laboratory.
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CHAPTER 1

INTRODUCT ION

1.1 General

* Characterization of stress-deformation behavior of concrete and

rocks has been a subject of active research for a long time. Linear

elastic, nonlinear (piecewise linear) elastic, elastic-plastic and

• endochronic models have been proposed and used by various in-

vestigators and the literature on the subjects is very wide. A

review of various models together with their implementation in

numerical (finite element) procedures is presented in Ref. [77].

The primary objective of the present study is to develop

a generalized constitutive model based on the theory of plas-

ticity. Although such a model can be used for a wide range

of materials, in this dissertation its applications to plain

concrete and rocks are emphasised.

One of the main objectives of this dissertation is to study

constitutive behavior of concrete and soapstone under multi-

axial load histories by using a truly triaxial or multiaxial

testing device. The truly triaxial device is capable of apply-

ing a general three-dimensional state of stress. Samples can

be tested along any three dimensional stress path. Therefore, the

constitutive behavior of concrete and soapstone can be studied

under all possible states of stress.

I



* 2

The conventional, octahedral, proportional loading and cir-

cular stress test series are conducted using the truly triaxial

* cubical device. For meaningful results, samples with consistent

initial properties are essential. In order to produce samples

with uniform initial properties such as density, equipment

* and procedures are developed to standardize the sample prepara-

tion process.

1.2 Scope a.nd Ubjective of Investigation

The first objective of this investigation is to obtain in-

formation regarding the material properties of plain concrete and

rocks subjected to multiaxial compressive stresses, the purpose

being to formulate constitutive relations for stress analysis of

structures constructed of these materials.

Pressure sensitive materials such as plain concrete and

rocks often show nonlinear and inelastic response when subjected

to external loads. Thus, the theory of plasticity can be

* effectively used to characterize the constitutive behavior of

concrete and rocks.

A large number of constitutive models are available at this

time for concrete and rocks. However, many of these models have

inherent drawbacks. Thus, there is need for new developments

in this area.

* A new constitutive model is employed to descrihe both

ultimate failure and yielding of concrete and rocks. Doth
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ultimate failure and yielding are defined by a single yield surfaca.

Hence the model is easier to implement for numerical computa-

tions.

The preciseness of solution of boundary value problems

using any constitutive model is highly dependent upon the values

of the material constants. As a result, appropriate laboratory

tests are necessary to determine these mraterial c.]nstants.

The model should agree with all the experimer.tal evidence-S
regarding the shapes of yield surfaces on various planes. The

model proposed here is expressed in terms of J1 9 J2D and J30 de-

viatoric (invariants of stress) with hardening defined by using

various measures of plastic strains. Some of the important assump-

tions of the proposed model are stated below:

* (1) The material is initially isotropic and under-

goes isotropic hardening during plastic defor-

mation.

(2) Deformations are small enough to disregard the

nonlinear terms of the strain displacement re-

lations.

(3) Elastic and plastic deformation are uncoupled.

(4) The system is considered to be under isothermal

conditions.

0 (5) The rate of loading is slow enough to disregard

the inertia effects.

0
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The second objective is to determine the material constants

associated with the proposed model by using laboratory test data

for a number of different plain concretes and rocks.

Finally, it is necessary to verify the proposed constitutive

model with respect to the laboratory test data. The material

constants associated with the model are determined from the

laboratory tests. The proposed model is then used to back-predict

the stress-strain response curves, ultimate failures envelopes

for different planes, ultimate strengths and volume change responses

under different stress paths from which the material constants

40 are determined. Also the model us used to back predict some

stress paths which are not used for finding the material constants.

1.3 Summaries of Various Chapters

0 Following this introductory chapter, Chapter 2 contains

full details of the research program including description of

materials tested, mix design and procedure, sample preparation

0 multiaxial test apparatus, testing program and testing pro-

cedure.

Chapters 3 and 4 contain the stress-strain response curves

under different stress path tests and strength, from multiaxial

tests with 4.0 in. (10.16 cm) cubical specimens for concrete

and soapstone, respectively.

-~~~~ %h \ 4



Chapter 5 is devoted to describing some fundamentals of the

theory of plasticity and the reviewing some of the existing

* plasticity-based constitutive models for concrete and rocks.

Chapter 6 contains the proposed constitutive model based

on the theory of plasticity. This is followed by the descrip-

* tion of the hardening behavior during inelastic deformations.

Chapter 6 also describes the general procedure to determine

the material constants associated with the proposed model.

Material constants are determined for eight different type

of concretes and rocks.

Chapter 7 contains the verification of the model with respect

to the laboratory test data.

Finally, a summary of the current work, conclusions and

recommendations for future work are presented in Chapter 8.



CHAPTER 2

* RESEARCH PROGRAM

2.1 Introduction

The experimental program followed was designed to contribute

to understanding the behavior of plain concrete and rock (soap-

stone) responses to general and complex load histories. For an

analytical formulation to successfully model the stress-strain

responses of plain concrete and soapstone to an arbitrary stress

path, the constitutive relations of the material must be well

defined. The characteristics of behavior of plain coni-

crete and rocks during loading, unloading, and reloading must

be understood and defined before any such modelling can be

successfully realized.

The other main purpose of the experimental work was to

determine the behavior and strength of the plain concrete and

soapstone under low confining pressures subjected to multi-

axial compressive stresses.

This chapter describes the different stages of the experi-

G mental program.

2.2 Description of Mlaterials Tested

.2.1 Concrete

Mix Design and Uniaxial Strength:

6
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The plain concrete mix proportions by weight were as

* Qfollows:

Cement: Sand: Gravel = 1.00:3.26:2.90

Cement: Water = 1.33

* Fine Aggregate Gradation

Sieve No. Particle Size
(mm) Percent Finer

4 4.75 97.6

1 10 2.00 89.3
20 0.85 52.24
40 0.425 23.3
60 0.250 8.13

140 0.106 0.0
200 0.075 0.0

Fineness Modulus 2.65

Coarse Aggregate Gradation

Sieve Percent Finer

1/2 71.454
3/8 26.455
4 0.531

10 0.244
20 0.202
40 0.176
60 0.164
140 0.117

The fine and coarse aggregate gradations fall within the limits

required by ASTMC33 - Section 4.1 and TABLE 2 [I], respectively.

Two batches of this mix design we.re prepared. For both

batches the average uniaxial Lompressive strength of plain con-

N0
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crete was approximately 2.85 ksi (19.63 Mpa) verifying the similarities

of the two batches. Based on this comparison, cubes from each batch

were selected randomly throughout the testing program.

Casting and Curing Procedures:

In order to reproduce identical mixes, a standard for casting and

* curing of specimens to be used for the multiaxial tests was established.

A cube mold was constructed of plexiglass and accommodated the

casting of 4 to 6 cubes at one time. A typical mold is shown in

* Fig. 2.1.

The constituents for the mix (cement, aggregate, and water) in

the proportions as outlined in previous section were weighed. All the

* aggregates and half of the water were placed in the mixer and rotated

for 5 minutes to produce a uniformly graded sand, and to allow the

aggregate to absorb the water during the mixing process. The remaining

* water and cement were then put in the mixer, and rotated for another

5 minutes.

Thirty 4.05 in. (10.29 cm) cubes, and eighteen 6x12 in.

(15.24x00.48 cm) control cylinders were cast from each batch.

The mix was immediately placed into the molds and vibrated.

This vibration was continued until it was felt that uniformity of the

rw specimen had been achieved and that the entrapped air had surfaced in

order to minimize air voids.
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After 24 hours of dry curing, the molds were stripped and

placed in a 100% humidity room for 28 days. The specimen was

then removed and prepared for testing.

The initial size of specimens was 4.05x4.05/4.05 in.

(10.29xlO.29xlO.29 cm) the additional thickness of 0.05 in.

(0.13 cm) was later removed by using a diamond grinding machine.

This was done in order to adhere to the strict tolerance of

4x4x4 in. (10.16xlO.16x1O.16 cm) dimension of the specimens to

be used in cubical testing device.

Sample Preparation:

As previously discussed, all specimens were ground to the

size of 4.00x4.00x4.00 in. (10.16x10.16x1O.16 cm). After

the grinding, air voids near the surfaces could be avoided.

Since these air voids would lead to a penetration of the flex-

ible membranes under pressure resulting in their rupture, all

surfaces of the specimens were sandblasted and refilled with

a concrete (or plastic) filler material (Durham's Rock Hard

Water Putty). This was allowed to harden and dry for 24 hours.

After drying, the puttied surfaces were sanded, reputtied and

finished with fine sandpaper. The average initial density

of all cubical specimens was 153.9 lb/ft 3 (2.55 gr/cm 3). The

control cylinders were capped with sulfur on the upper and
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the lower surfaces and tested by using standard uniaxial test-

ing equipment and by following appropriate procedures [1].

2.2.2 Soapstone

Composition, Use and Location of Material:

"Soapstone" is a general term used to describe a metamorphic

rock composed essentially of the mineral talc, a soft hydrous

magnesium silicate mineral. The mineral talc, Mg6 (Si8020 )(OH) 4,

and the rock soapstone are extremely versatile materials and

have a number of uses as industrial products. Talc's extreme

softness (I on Mohs' scale of hardness), the ease with which

it can be ground into an ultrafine, white pow,_r. its c;er;i :l

inertness, high fusion point, low water absorption, low

shrinkage when fired, low electrical and thermal conductivity,

and high reflectivity make it useful as a ceramic tile base,

paint extender, filler in rubber, paper, roofing, plastic,

construction use -- buildings, chimneys, etc.

In 1967, Steatite of Southern Oregon, Inc., founded by

John H. Pugh of Grants Pass, began selectively mining pieces

of soapstone from a landslide deposit on Powell Creek near

Williams Oregon. The main source now is in the upper Apple-

gate-Squaw Creek-Elliot Creek Ridge area in Southern Jackson

County in Oregon [59].

0 ,,i ,- f - - . . . " - .. .-.. , -- ,'i "i
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Geology of Area'

Talc and soapstone deposits occur mainly with altered

igneous rocks or in metamorphosed dolomite. The known south-

western Oregon occurrences are all associated with serpentinized

ultramatic rocks and are typical of this type of deposit. They

occur as sheared lenses within or salvages on serpentinites.

The talc alteration varies from thin salvages to complete re-

placement of the serpentinite mars [59].

The talc and associated magnesium-bearing minerals are

formed by the reaction of serpentinite with carbon dioxide or

with sliceous country rocks in a suitable temperature and

pressure environment. The deposits along Elliot Creek Ridge

are in lenses and irregular pod-shaped masses of altered ser-

pentinite within rocks mapped as older schists and schists

of pre-Mesozoic age. Metamorphic age of these rocks, determined

by potassium-argon analysis of muscovite, is 141 m.y., or late

Jurassic. Because the outcrops of altered serpentinite which

contain the soapstone deposits are slightly more resistant to

erosion than the surrounding schist, they form rough, craggy

knobs and ridges at or near the crest of Elliot Creek Ridge.

Soapstone exposed at the surface is found as thin to thick

salvages on the edges and as pods within the medium-grained,

greenish metaser - pentinite.

This section is rewritten in part from Rcf [59].
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Sample Preparation:

Blocks of good quality soapstone weighing up to several

*tons are removed and trucked to a staging area at Divident

Bar on Squaw Creek, about 2.5 miles from the mine, where they

are sorted, sized, and cut into blocks for shipping. Basic

equipment at the staging area is a front-end loader for moving

large blocks, gang saw, band saw, and table trim saw. Market-

ing, packaging, and shipping are done from a small shop at

the Pugh resident in Grants Pass.

For the experimental purpose herein, all specimens were

taken from a single block of soapstone. For multiaxial test-

ing 4x4x4 in. (lO.16xlO.16xlO.16 cm) cubical specimen were cut

(by a local company) and shipped for our purpose to the depart-

ment of Civil Engineering and Engineering Mechanics at the

University of Arizona in Tucson. After arrival, all six sur-

faces of the specimens were sanded and refilled with a plastic

filler material (Durham's Rock Hard Water putty). This was

allowed to harden and dry for about 24 hours. After drying,

the puttied surfaces were sanded, reputtied and finished

with fine sand paper. (Soapstone is a fairly iood homogeneous

and isotropic rock.)

Uniaxial compressive strength of soapstone is found to

be about 1.2 ksi (8.27 MPa) under conventional triaxial com-

0
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pression (CTC) test with confining pressure 70= 0 in the

multiaxial device. The average moisture content and density

*for all specimens were about 0.57% and 189.0 lb/ft 3 (3.17

gr/cm 3), respectively.

2.3 Multiaxial Test Apparatus

A'detailed description of the test cell is given by Desai

et al and Strue [20, 76]. The apparatus consists of a rigid

cubical space frame and six walls that function as lids. Details

of the device and an exploded view of the wall and testing

arrangements are shown in Figs. 2.2 and 2.3 The openings in

the frame form six similar cavities. Each of these cavities,

together with the adjoining walls and a proper seal arrange-

ment, act as pressure vessel.

* The 4 in. cubical specimen is placed in the center of

the space frame's cubical cavity, then sealed off by six walls

which are bolted on the frame. The load is applied via a

hydraulic pressure system where urethane membranes and pressure

seals located on the inner face of each .qall contain the

hydraulic fluid pumped into the apparatus. Each set of

opposing walls is connected to an individual pumping system

which regulates the stress level on that axis. Thus the

stresses on each of the three axes are independently controlled

* such that a stress with ai= 2=73 can be achieved. Proximity-
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type transducers (probes) are used to measure the deformations

in the three principal directions. All test data is monitored

* and plotted by computer later so the specimen behavior can be

observed and analyzed.

2.3.1 Frame

The frame of the test cell, Fig. 2.3 was machined from

10 in. cubical block of VASCOMAX 250 CVM 18.5% nickel maraging

steel. The steel offers exceptional ductility, a strength

and hardness, all necessary material parameters considering

the high stresses the equipment is subjected to after machin-

ing to the dimensions given in Fig. 2.4 the block underwent

heat treating to obtain the mechanical properties quoted by

the manufacture as: ultimate tensile strength, 264 ksi

(1,820.28 ,Pa); yield strength at 0.2% offset, 255 ksi (1,758.

23 MPa); elongation at ultimate - 13%; modulus of elasticity,

26, 500 ksi (I.83xi0 5 MPa). Figure 2.4 shows detailed dimen-

sions of the box frame. The test cell assembly procedure dis-

cussed in Section 2.4 is easily understood if the coor-

dinate system shown in Fig. 2.2 is followed.

2.3.2 Walls

The walls covering the six faces on the cubical frame

are built up of two components. The main frame of each wall

was machined from 4 in. (10.16 cm) thick ALCLAD 7075-T6
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aluminum plate serve as the lids for the six pressure vessels

and as a base for the displacement measuring probes. They

* contain the pressure seal devices and the hydraulic fluid in-

let ports. The square top piece, bolted on the main wall, acts

as a base for probe attachment. One of the two fluid ports

serves as an inlet for the hydraulic fluid, the other as an

outlet to bleed entrapped air from the pressure chambers or

as a pressure chamber. A photograph of a typical wall is

shown in Fig. 2.5

2.3.3 Seals

Details of the sealing system are shown in section in

Fig. 2.6. Two 0-ring grooves form the pressure seal between

the wall and the frame. The inner groove, closest to the sample,

* hold the outer 0-ring sleeve of the vinyl or polyurethane mem-

brane. The outer groove and 0-ring which is compressed to a

maximum when the wall is assembled to the frame. The sealing

* capacity of this arrangement increases with cell pressure.

A polyurethane pad with a sleeve and a leather pad rest

against the sample face, and transmit the fluid pressure from

*the membrane to the specimen. They are flexible enough to

follow minor differential distortions on the specimen surface.

These two pads also help to prevent a membrane extrusion from

* occurring when a large deviatoric stress is present between two

adjacent pressure vessels. Fig. 2.7 shows the membrane, the
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polyurethane pad, the leather pad and the aluminum target.

The leather pads were made in-house from about 1/4 in.

shoe leather to the approximate specifications given in Fig.

2.8.

First, the pads were cut and sanded to the 4.06 in. (10.

31 cm) square dimension. They were then placed, one at a time,

in a positioning fixture mounted in a turning lathe and the

3.62 in. (9.19 cm) outside diameter hole centered in the pad

with a 450 bevel, was cut through. Finally the 450 bevel along

the pad's edges was sanded to minimize the interference at the

interfaces between leather pads of adjacent pressure vessels.

After each test, these pads were checked and resanded to the

4.06 in. (10.31 cm) square dimension, and re-beveled, if

necessary.

2.3.4 Pressure System

The hydraulic pressure that is applied to each of six sides

of the cubical specimen is generated and controlled by a hy-

draulic system. A silicon fluid with a viscosity of 100 ctks

is used as the pressurizing medium. Silicon liquid is pumped

by positive displacement pumps. These three independently

operated pumps, by suitable valving, can be used to produce

any combination of the stresses in the direction of the three prin-

cipal axes. Pressures are measured by Bourdon pressure gages 0-20 ksi

~ U:AA
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(137.9 MPa) range, fitted to each pump, Fig. 2.9. The pumps

themselves with their drained valves ac' as pressure regulators.

Valves are installed in the lines leading to the wall. A rapid

filling arrangement is used to fill the membranes before the

start of the experiment. Silicon liquid is forced into the

membrane from a reservoir of liquid by compressed air. The

same arrangement works backward in draining the liquid from

the membranes, when vacuum is applied instead of compressed

air.

2.3.5 Deformation Measurement System

Surface displacements on the specimen are measured by a

Bently-Nevada proximitor probe system. The system is composed

of two basic units; the probe, which is the sensing element,

and the proximitor driver, which provides the excitation to

the probe. The system works on inductive proximity principles

and so does not have any physical contact with the specimen under

test. The probes shown in Fig. 2.10 measure the distance between the

specimen and a detector coil embedded in the tip of the probe.

The test specimen is covered with a conducting aluminum foil.

Fig. 2.3. The probes now have the foil as a well defined target

to aim at. The vinyl membrane, silicon fluid and pad system

occupies the space between the target and the probe tip. Pre-

sumably these are all non-conductive and dielectric.

The proximitor probes are calibrated in a special calibra-
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tion setup, Fig. 2.11 before use in an experiment. The cali-

bration setup is so designed that it simulates the action in-

- side the pressure vessels. Readings are taken with the help

of a dial gage connected to a target through a solid threaded

aluminum rod. These calibration values are used to extra-

0 polate the measured displacements in form of voltages during

the experiment.

2.3.6 Multiaxial Test Cell Calibration

The multiaxial test cell has to be calibrated to determine

the relation between cell deformations and pressure. Since

the deformations of the cell that take place in the frame,

bolts and walls are dependent on the manner of the assembly

of the cell and the loadpath, the cell must be calibrated for

each load path and has to be assembled for the test in the same

manner as for the calibration. This includes the sequence of

mounting the six faces and the tightening of the bolts. The

calibration is performed with a 4.0 in. (10.16 cm) aluminum

cube of known elastic constants which are E = 10.4xlO 3 ksi

(71.71xi0 3 Mpa) and v 1/3, respectively. Subtracting the

known deformations of the elastic aluminum cube from the total

deformations of the pressurized cell gives the deformations

for the cell itself. These deformation data are stored in

a test cell calibration array and are used for specific tests

with the given stress path.
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2.3.7 Data Acquisition System

Teh data acquisition system used for collecting the defor-

mation produced by applying loads to the cubical specimens con-

sists of the proximitor probes and the central data acquisition

system which houses the proximitor drivers. All data reduction

is done with a Hewlett-Packard 9825A calculator. The proximitor

readings are monitored by means of scanner, voltmeter and then

recorded and stored in the memory of the calculator. The re-

cording sequence consists of the reading of six proximitors, one

control proximitor to record electronic drift, preceded by three

pressure readings. The recorded pressure and voltage readings

are printed out on a paper tape. A constant scanner reading

frequency is "set", so that each channel has equal time to "set"

to a steady voltage. Figs. 2.12 and 2.13 show Hewlett-Packard

central data acquisition system, computer and plotter.

2.4 Test Procedure

46 As previously discussed, the test cell is not perfrectly

rigid and deformations do take place in the frame, walls, bolts,

etc., when the specimen is stressed. Therefore, since the cell

must be calibrated for these deformations, and in order to mini-

mize the error that may occur in these deformations from test

to test, a systematic manner of assembling the cell was es-

tablished and strictly followed throughout all tests. This
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standard procedure also helped speed the assembly of the system.

The wall mounting and bolt tightening sequences are first men-

tioned.to avoid being repetitious later.

The walls were mounted to the box frame and bolted down in

the following sequence: -Z, +Z; -Y, +Y; -X, +X. The aluminum

targets, leather pads and polyurethane pads were inserted first

and the corresponding aluminum walls with membranes attached

were mounted; Fig. 2.2 demonstrates this. After opposing walls

were placed, the four corner bolts for these walls were in-

serted and alternately tightened from wall to wall in a systema-

tic manner such that the specimen remaned centered in the frame.

Once these four bolts were snugged and the walls tightly in

place, the bolts were torqued to 300 ft-lbs (406.8 N.m) using

an indicating torque wrench. Then the remaining bolts were

inserted and torqued to 300 ft-lbs (406.8 N.m) in a clockwise

manner, starting at the top. Fig. 2.14 shows the bolt tighten-

ing sequence followed.

The Z-direction with s.pecimen, targets, pads, membranes and

walls were positioned and affixed, followed by the components

in Y and X -directions according to the sequence described

above.

With the test cell assembled, the hydraulic tubing was hooked

up and the pressure cells filled with hydraulic fluid. The en-

...
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trapped air in the cells was then bled out of the system through

the bleed holes. The coaxial cables from the central data acqui-

* sition system were then connected to their respective proximitor

probe cables. An initial manual scan through the 6 proximitor

channels indicated whether or not the test could be started.

* If necessary, as indicated by distorted proximitor voltage read-

ing, the specimen dislocation could be remedied by carefully

applying pressure to one or more sides, translating the speci-

men by required amounts. The data acquisition and analysis

computer program was then loaded into the HP 9825A calculator's

memory, and the test conducted. The assembled test cell is

shown in Fig. 2.15

2.b Test Program

The testing device is capable of applying loads following

any arbitrary stress path. Figures 2.16a, 2.16b, 2.16c show the

schematic of the commonly used stress paths in 3-D stress space.

* octahedral plane and triaxial plane, respectively. Thus, it is

ideally suited for testing geological material such as a concrete

and rocks because their stress-strain responses are highly oath

dependent. As a result, the parameters obtained from such test

data would be more representative of the field conditions com-

pared to Conventional Cylindrical Triaxial tests in which only

*• a limited number of stress paths are possible. in the following,

each test series is described separately.
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2.5.1 Stress Paths on Triaxial Plane

The main purpose of this test series was to collect stress-

*strain and strength information of 4.0 in. (10.16 cm) cubical

specimens tested in the Truly Triaxial device under triaxial

loading conditions with low and high stress levels in order to

* determine the constitutive relations and strength of the material

for triaxial compressive stress states. These triaxial tests

were conducted by loading the specimen hydrostatically to a

o confining pressure equal to one of five selected levels,

Go = 1,2,3,4 or 7.5 ksi (6.85, 13.79, 20.685, 27.58 or 51.713

Mpa), and then subsequently following monotonic shear

stress path to stay on the triaxial plane along various di ections

as shown in Fig. 2.16c. The data acquired during these tests

consist of the stress-strain response in each loading direction

as well as the ultimate (failure).

Also the hydrostatic compression (HC) loading, with maximum

confining pressure of co = 8 ksi (55.16 iPa), tests used to acquire

information about the volumetric behavior.

Stress-strain and strength results of these tests are pre-

sented in Chapters 3 and 4 for concrete and soapstone, respective-

ly.

2.5.2 Stress Paths on Octahedral Plane

* The main objective of this series was to collect stress-

-
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strain and strength information of 4.0 in. (10.16 cm) cubical

specimens tested in the cubical device under triaxial loading

* conditions in order to determine the constitutive relation of

material for traixial compressive stress states. These triaxial

tests were conducted by loading the specimen hydrostatically

* to the octahedral normal stress, as low as possible, equal to

one of three selected levels aoct 2,3 or 4 ksi (13.79, 20.675

or 27.58 MPa), and then subsequently following a monotonic

shear stress path to stay on the octahedral plane along either

Triaxial Compression (TC), Simple Shear (SS) or Triaxial Ex-

tension (TE) direction as shown in Figs. 2.16b and 2.16c thus

* inducting a change in only the octahedral shear stress (Toct)

along these paths. Through examination of the ultimate data in

triaxial plane in Chapters 3 and 4, one can see that if tests

had been conducted along the TE stress path at confining pressure

lower than 2 ksi (13.79 MPa), they would have ended before the

specimens failed because tensile stresses would have beeen re-

quired, which was impossible at the time this research was con-

ducted.

The superposition of a pure shear stress on an initial hy-

drostatic state permits the investigation of the effect of

three-dimensional shear stress state on the stress-strain re-

lations of the material. The data acquired during these tests
0

consist of the stress-strain response in each loading direction

-,



* 40

as well as the ultimate Fail1ure data. By assuming isotropy

of the material, the shape of the ultimate failure envelope

* for the three octahedral planes is determined from the ultimate

(failure) data by loading along these monotonic stress paths.

Stress-strain and strength results of these tests are

pecti vely.

2.5.3 Proportional Loading Paths

In an attempt to gather additional information regarding

the behavior of plain concrete subjected to proportional load-

* ing, these tests were conducted. Proportional loading tests were

conducted such that the ratio of R remain the same

during the change in loading. Two ratios of R = 1/3 and 2/3

* were selected here.

Stress-strain response of these tests for the concrete

are presented in Chapter 3.

2.5.4 Circular Stress Path Tests

The circular stress path shown in Fig. 2.17 illustrates

the type of test done in this test series. The stress path was

selected in order to gain information about the effects of the

third stress invariant. Characteristic of circular stress pathi is

the fact the first and second stress invariants are held constant
with only the third stress invariant varying during the loading
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sequence. Isolation of the third stress invariant in this way

allows its effects to be clearly identified.

Tests of this type were performed in the 4.0 ksi (27.58

MPa) deviatoric plane. From the ultimate (failure) data that

were obtained in the section 2.5.2 tests, values of the octa-

hedral shear stress, that is radii of the circle, were selected.

This was done in such a way that the circular stress path re-

mained sufficiently far below the ultimate strength of the con-

crete and soapstone in order that significant damage of the

concrete and soapstone specimens and microcracking, would not

result during the loading sequence.

A value of 100 for the incremental octahedral stress angle,

®oct' was selected for these tests.

Stress-strain response of these tests are presented in

Chapters 3 and 4 for concrete and soapstone, respectively.
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CHAPTER 3

TEST SERIES AND RESULTS ON PLAIN CONCRETE

3.1 Introduction

Various stress paths and their abbreviations used in test-

ing program are shown in Fig. 2.16. These include Hydrostatic

Compression (HC), Conventional Triaxial Compression (CTC), Re-

duced Triaxial Extension (RTE), Triaxial Compression (TC),

Triaxial Extension (TE), Simple Shear (SS) paths, Proportional
S

Loading (PL), Circular Stress Path (CSP) and Arbitrary on CTC

Path (AP test paths. These test series were conducted to deter-

mine the behavior of plain concrete unaer tnree almensional states

of stress.

The triaxial plane is the plane in the principal stress space

(aI, 02, 03) which bisects u2 - 03 axes and is coplanar with

the a, - axis. In the conventional triaxial device, only tWiO

principal stress can be varied. Therefore, on the triaxial plane,

two of the three principal stresses are equal.

3.2 Preliminary Test Series

The details of the preliminary test series for cylindrical

specimens are shown in TABLE 3.1 where the specimen type and test

condition are given along with the specimen numbers, the age at

which they were tested and the strength results. All tests were

0
43
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TABLE 3.1
PRELIMINARY TEST PPOCRAM

SPECIMEN TYPE: 6x12 in. (15.24x30.48 cm) CYLIOER

TEST CONDITION: UNCONFINED CO1PRESSION

DESIGNATION CASTING TESTING AGE AT f'
DATE DATE TESTING k

SERIES SP.NO. MO/DA/YR MO/DA/YR (DAYS) (ksi)*

Al 2/9/84 7 1.50
A2 2/9/84 7 1.60
A3 2/9/84 7 1.55

Bl 2/16/84 14 2.12
B2 2/16/84 14 2.12
B3 2/16/84 14 2.10

BATCH
NO. 1 Cl 2/2/84 2/30/84 28 2.85

C2 2/30/84 28 2.86
C3 2/30/84 28 2.83

Dl 3/22/84 50 3.18
D2 3/22/84 50 3.00
D3 3/22/84 50 3.12

El 3/3/84 7 1.55
E2 3/3/84 7 1.58
E3 3/3/84 7 1.58

Fl 3/10/84 14 2.2
F2 3/10/84 14 2.1
F3 3/10/84 14 2.3

BATCH
NO. 2 Gl 2/23/84 3/24/84 28 2.88

G2 3/24/84 28 2.84
G3 3/24/84 28 2.82

HI 4/16/84 50 3.0
H2 4/16/84 50 3.1 2
H3 4/16/84 50 3.13

*1.0 psi = 6.89 kPa
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conducted in triplicate. Notice that the unconfined compression

tests for the cylinders were conducted at varying specimen ages

of 7, 14, 28 and 50 days. This was done to observe the effect

of specimen age on strength after the curing period of 7 days in

the humidity room and the remaining time in air in order to deter-

mine if after 50 days of curing, full strength was achieved such

that the cubical tests could be conducted without the variability

of increasing strength with age coming into play.

3.3 Results from Various Tests

3.3.1 Hydrostatic Compression (HC)

The results of the two replicate HC tests are presented in

Figs. 3.1a, 3.1b, 3.2a, 3.2b. Increments of load (stresses) of the

same magnitude are applied on all six faces of the specimen. It

is seen from Fig. 3.1a, 3.2a that the strain in the vertical

direction is substantially less than the strains in the lateral

directions. This may be due to the fact that the plain concrete

is made by pouring and vibrating the concrete mixed in vertical

direction. There are four unloading-reloading cycles in each

test. Average slopes of the unloading-reloading curves is used

to calculate the elastic parameters as well as the plastic part of

the total strain. Figures 3Mb and 3.2b show the mean pressure

vs. volumetric strain curves. The elastic (unloading-reloading)I

bulk modulus appears to remain almost constant throughout the test

at about 487.86 ksi (3363.80 MPa).
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3.3.2 Conventional Triaxial Compression (CTC)

Figures 3.3 to 3.14 show the stress-strain responses for

four Conventional Triaxial Compression (CTC) tests at confining

pressures of 0.0, 1.0, 2.0 and 3.0 ksi (0.0, 6895.0, 13.79 and

20.685 MPa) respectively. In these tests, the stresses in la-

teral directions, G2 and G3 are kept constant (equal to the con-

fining pressure, 00), while the vertical stress I is increased

in small increments. There are three unloading-reloading cycles

in each test. A part of these tests is intended to study the

concrete response at low confining pressure.

The Z direction corresponds to the direction of sample vi-

bration (compaction); this can explain the high degree of iso-

tropy exhibited in the x and y directions, as shown in the octa-

hedral shear stress vs. strain plots of all four tests. From

these plots it is evident that the sample strength increases with

initial confining pressure as expected for frictional materials.

3.3.3 Reduced Triaxial Extension (RTE)

The results of the RTE test are presented in Fig. 3.15 and

3.16. In the RTE test, the stresses in the x and y directions

were held constant at the initial hydrostatic pressure 7.5 ksi

(51.71 MPa) while the stress in the Z direction was reduced. The

degree of isotropy in x and y direction is similar for this test

as in the previous tests, in Figs. 3.3-3.14, as shown in Fig. 3.15.

,I
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0

As part of the graphs show the three principal strains i

(i = 1,2,3) and sV plotted against the major principal stress

* a; in these graphs, the stress axis is labeled "Major Principal

Stress." In all the tests excepting the Hydrostatic Compression

(HC) test, the three principal strains ei (i = 1,2,3) are plotted

as a function of the octahedral shear stress, TOct. Thus, the

plastic sLrains for each principal strain can be calculated very

easily.

3.4 Test Series on the Octahedral Plane

This series consists of five tests, intended to explore the

concrete response to triaxial load cycles and to provide data

0 to locate yield surfaces on an octahedral plane from ®=-300 to

0=300, where a = Lode angle. The testing program consisted of

2 TC, 1 SS and 2 TE,-Fig. 2.16, tests with initial hydrostatic

pressure of c0 = J1/3 = 2.0, 3.0, 4.0, 4.5 and 5.0 ksi (13.79,

20.69, 27.58, 31.03 and 34.48 MPa). All specimens were first

loaded in HC up to ao and then subjected to deviatoric cyclic
0

loading along TC, SS and TE paths with increasing octahedral shear

stress, TOc t , to ultimate conditions.

3.4.1 Triaxial Compression (TC)

Figures 3.17 to 3.22 show the stress-strain responses for two

triaxial compression (TC) tests at confining pressures of 2.0 and

3.0 ksi (13.79 and 20.69 mpa), respectively. In the TC stress path,

major principal stress 1l is increased while the minor principal

. U F
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stresses G2 and a3 are decreased. The increment of the major

principal stress, La1 is double that of the decrement a 2 = A 3

of the minor principal stress. Thus aoct remains constant be-

cause a1 = 2Aa 2 " As with other stress paths in the octahedral

plane, this separates the effects of hydrostatic and deviatoric

stress components.

Since a2 and a3 are equal, L2 and F3 should also be equal

for isotropic behavior. One can see the good agreement between

these strains (E and ey in this case) from Figs. 3.17 to 3.22.

During TC, the volumetric behavior is compressive and nearly

linear just prior to dilation, then becomes expansive. This

phenomenon occurring under shear distortion at constant confining

pressure is usually observed for concrete behavior. Gerstle et

al [34] observed similar behavior to occur for plain concrete.

The deviatoric stress-strain behavior is stiffer for low confining

pressure (ao) than it is for high.

3.4.2 Simple Shear (SS)

VThe state of stress of a specimen under simple shear refers

to an octahedral plane normal to the space diagonal at a given

hydrostatic stress level, aoct = 1/3 (Gi+G 2+a3). Intermediate

principal stress, a2 is kept constant, but the major and minor

principal stress, aI and a3 are increased and decreased respective-

ly by the same amount so that Goct remains constant. Figs.

3.23 to 3.25 show the stress-strain responses for Simple Shear

(SS) test at confining pressure 4.5 ksi (31.03ilPa).
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It is significant to note that the intermediate stra n ': -

ly compressive, Figs. 2.23 to 2.24.

3.4.3 Triaxial Extension (TE)

Figures 3.26 to 3.31 show the stress-strain resDonse -

Triaxial Extension (TE) tests at confining pressures ,

5.0 ksi (27.58 and 34.48 MPa , respectively. In tle

path, a 1 and a 2 are increased equally while c3 is decrease--,

maintain a0 at a constant level. Since a1 and o2 are equal,

1 and E2 should also be equal for isotropic material.

As in TC results for e2 and E3' one can see good agreement De-

tween 1 and £2 (ex and cy in this case) for TE tests from t-ne

individual results, the difference stemming from the HC pGrti .

As in the other tests (TC and SS), the volumetric behavisr is

compressive and nearly linear up to the point of dilati,(n. L,.

immediately after dilation of the specimen, rapid expansir"

the volumetric behavior takes place, as if the specimen we

splitting in half and coming apart.

In all the tests, the three principal straii-:

and -V are plotted against the major principal se:-.

octahedral shear stress, 7oct

3.5 Octahedral Stress-Strain KelaroVns

The octahedral normal and shear stress a.:
, C
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the octahedral normal and shear strains FOct and yOct are re-

presented in terms of principal stresses and strains by the

following relations:

aoct =1/3 (a, + a2 + o3) (3.1a)

TOct = 1/3 V(1 - a2)2 + (a2 - o3)2 + (03 - a1) 2  (3.1b)

COct = 1/3 (E1 + E2 + £3) (3.1c)

Yoct = 1/3 Y/(E1 - £2) 2 + (E2 - F 3) 2 + (E3 - E) 2 (3.1d)

The octahedral stress-strain curves obtained from CTC, RET, TC,

SS and TE tests are plotted individually in Figs. 3.32 to 3.41,

respectively. The (unloading) slope of the TOc t -yoct curve is

two times the shear modulus, G, and is determined from these tests

to be 440.36 ksi (3036.28 MPa).

3.6 Proportional Loading (PL)

The proportional loading tests are conducted such that the
r2 03

rati of R- remains the same during the change in load-

ing. Two different load ratios, R, were followed (R=1/3 and R=

2/3). The deformational response of the specimen under propor-

tional loading was monitored at intervals of 250.0 psi (1723.75 kPa).

Figs. 3.42 and 3.43 show the stress-strain responses for the two

proportiunal loading (R=1/3 and R=2/3) tests, respectively.

Since 02 and a3 are equal, E2 and E3 should also be equal for

isotropic behavior. One can see the good agreement between these

strains from the individual results. None of the PL tests reached
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an ultimate strength plateau indicating failure.

3.7 Circular Stress Paths (CSP)

* The circular stress path was selected in order to gain in-

formation about the effects of the third stress invariant. Tests

of this type were performed in 4.0 ksi (27.58 MPa) deviatoric

planes. These tests involve hydrostatic, monotonic loading to

specified deviator plane, followed by stress deviation along

the triaxial compression path to the specified circle. The cir-

cular stress paths consist of 10 degree load steps. From the

failure data that were obtained in the triaxial plane test series

and octahedral plane test series, value of octahedral shear

stress, radii of the circle, were selected. This was done

in such a way that the circular stress path remained sufficient-

ly far from the ultimate strength of the concrete in order that

damage of the concrete specimen, microcracking, would not result

during the loading sequence.

Figures 3.44 and 3.45 show the stress-strain responses for

two circular stress paths (CSP) tests at confining pressures

of 4 ksi (27.58 Mpa) and octahedral shear stress, T oct' of 1

and 1.5 ksi (6.895 and 10.34 MPa), respectively. The graphs

of these circular paths show the major principal stress, a1

plotted against the three principal strains. Figures 3.46 and 3.47

show the three principal strains plotted against the angle of

similarity Oct' measured counter-clockwise from the triaxially

0P
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compressive axis in the deviatoric plane.

3.8 Arbitrary Stress Path (ASP)

*Figures 3.48 show the stress-strain responses for arbitrary

stress path (ASP) test at three different confining pressures of

1.0, 2.0 and 3.0 ksi (6.895, 13.79 and 20.69 MPa) on the same speci-

* men. This specimen was loaded cyclically along the hydrostatic

axis with gradually increasing a0 up to 1.0 ksi (6.895 'Pa), and

then cycled along CTC path with gradually increasing aoct to

near failure, and then unloaded to original confining pressure,

ao' 1.0 ksi (6.895 MPa). Similarly, CTC test was repeated with

confining pressures, ao' of 2.0 and 3.0 ksi (13.69 and 20.69 MPa).

3.9 Ultimate Failure (Strength)

The ultimate condition is defined as 0he asymptotic value of

the stress in the stress-strain response curve, as shown in Fig.

3.49. Since the cubical testing apparatus is a stress-controlled

device, not being as stiff as one would like, some of the speci-

mens did not dilate because of brittle failures occurring (usually

a corner or edge failure). Therefore no failure stresses were

recorded for these specimens. However, in some of the tests,

slight increases in shear stress (T ct) were applied beyond the

point of dilation. Of the 20 specimens tested, 10 reached failure

(the stress state at which dilation occurs as shown in Fig. 3.49).

TABLE 3.2 lists the ultimate data for these specimens. Failed

samples are shown in APPENDIX A. Figures 3.50 to 3.52 show the

f I e
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TABLE 3.2

ULTIMATE DATA 7OR PLAIN CONCRETE

(Compressive Stresses Positive)

Load Path Spec. CI c2 .- - -oc2(Fig. 2.1-0) No~cj tI_* (ksI ( ___ __

B3  I4.5033 0.0 0.0 1.5011 2.12 .50331 2.6

Triaxial B 10.47 1.0 1.0 4.16 4.47 12.47 5 a1T

Compression -___

(CTC) o B2 1 3.951 2.0 2.0 5.8337 5.47 17.50 6 .70

B4  ,17<371 3.0 3.0 7.4803 6.78 22.441 3.30

T riaxial ~'. 28 ~
Compression E T 6.02 -0.01 -0 . 7 .1f _

(TC) 8 40 .8 1
1__ _ 8.20 0.3 0.3 3.0 3.2 .S

Simple -
Shear [ .
(SS) M 9.42 J-0.42 4.5 4.5 4.02 1-1.6

T axial I -

Extension .2979 6.2979- 5957 &.Q 3.25 1 8 3.

(E) 7.875 7.875 -.750d 5.0 4.07

"3 3198 9.319 .6395 6.0 4.69 18 .

Reduced
Triaxial I x Vy

Extenson. i 1

*1 0 si = 6.89 k:a

Z4,

*q

- ~ '-4,
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1.0 psi = 6.89 kPa

8

*-CTC Test
O--.- TC Test

7- SS Test
-- TC Test

6/

/
/

(A A

/

€/

4 8 12 16 20 2 471

Figure 3.50. Observed Ultimate Surfaces in i

Plane for Plain Concrete

/*N
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*- SS Test (0 = 4.3 ksi)

Test (0 = 4, 5 and 6 ksf

SS CTC,( TC (6 = -30)
(E =00)

TE6.0 Toct (ksi)

TE

3 0 o 4 .5

Compression
Stresses

--3.0 +

•\ ", \)300 1.5

<Z '--,

c2 3

Figure 3.51. Observed Ultimate States in nc-anedral

Plane for Plain Concrete.
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Figure 3.52. Observed Ultimate Surfaces in Tr~jaxial
* Plane for Plain Concrete.
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plots of the data in VJT2D - J octahedral or deviatoric and

triaxial planes, respectively.

Notice in TABLE 3.2 that x,y,z directions of the specimens

do not always correspond to the 1,2,3 principal directions. For

CTC, TC and SS tests, az , ax and a y correspond to al, a2 and a3

respectively. The reason for the differences is to be consis-

tent with the sign convention employed in the conventional cy-

lindrical triaxial test for CTC, TC, RTE and TE paths. The SS

path is not possible in conventional triaxial tests, therefore

the SS sign convention was arbitrarily chosen to be the same

as the CTC and TC's. The SS data is not plotted in Fig. 3.32

simply because the SS stress path does not lie in the triaxial

plane. Also CTC stress path does not lie in octahedral plane.

Several conclusions can be drawn from examination of the

strength results shown in Figs. 3.30 - 3.5'.

i) The octahedral shear strength of plain concrete

specimens is strongly dependent upon the stress

path (0 or J3 ). In the tests with constant hyuro-0

static or confining pressure (Go = Jl/3), the order

of strength from tiie !araest to the smallest is CTC, TC,

SS, and TE. Had the strengths proven to be independent of

the stress path, the three lines through the strength

data in Fig. 3.50 would lie atop each other and a

Drucker-Prager shaped envelope would have resulted.

ii) There is a direct relationship between strength and

confining pressure (see Fig. 3.50).
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iii) The ultimate envelopes in the octahedral planes

(Fig. 3.5) are non-circular, i.e. they depend

* on stress path (0). Many researchers, including

Gerstle, et al [33], have observed similar re-

sults for plain concrete. Had the plain concrete

• results proven to be independent of the stress

path, the ultimate data would plot as circles

in the octahedral planes. If the results had been

independent of hydrostatic pressure, the ultimate

envelopes would be identical for varying hydrosta-

tic pressure. With some thought and imagination,

one can see that the plain concrete ultimate sur-

face that will develop is basically cone-shaped,

having a non-circular cross-section, similar to

one shown in Fig. 5.6. Any ultimate (failure)

criteria used to predict the strength behavior of

the plain concrete must include the effects of

stress path (0) and hydrostatic pressure (a0 ).

iv) Finally, through examination of the data in the

triaxial plane (Fig. 3.52) and in TABLE 3.2 one can

see that if the tests had been conducted-along

TE stress path at confining pressures lower than

about 4 ksi (27.53 HPa), they would have ended
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before the specimens failed because tensile stresses

would have been required, which are impossible to

achieve with the present device.



CHAPTER 4

TEST SERIES AND RESULTS ON SOAPSTONE

4.1 Introduction

Tests are conducted on soapstone in HC, CTC, TC, SS, TE and

CSP states and the stress-strain responses together with the dis-

cussion of test results are presented here.

4.2 Triaxial Plane Test Series

4.2.1 Hydrostatic Compression fHC)

The results of the HC test are presented in Figs. 4.1a, 4.1b,

4.c and 4.1d. In the HC test, increments of 250 to 750 psi

(1723.75 to 5171.25 kPa) were simultaneously applied to each face.

The sample was loaded to 1.5 ksi (10.34 MPa) unloaded to zero;

(initial confining pressure); reloaded to 4.5 ksi (31.03 MPa) un-

loaded to zero; and again reloaded to 8 ksi (55.16 MPa) finally

unloaded to zero.

There are four unloading-reloading cycles in HC. The slope

of the unloading-reloading curves are used to calculate the elastic

parameters as well as the plastic part of total strain. Figure

4.1d shows the mean pressure - volumetric strain curves. The

elastic bulk modulus appear to remain almost constant throughout

the test at 449.51 ksi (3099.37 MPa). The material demonstrates

Vii
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fairly good isotropy in x and y direction as seen from the princi-

pal stress-strain curves.

* 4.2.2 Conventional Triaxial Compression (CTC)

Figure 4.2 to 4.10 show the stress-strain responses for CTC

tests at confining pressures of 1.0, 2.0 and 3.0 ksi (6.895, 13.79

20.685 MPa), respectively. From these plots it is evident that

the sample strength increases with initial strength plateau in-

dicating failure. The tests are terminated when they reach that

level.

4.3 Test Series on the Uctahedral Plane

This series consists of nine tests, intended to explore the

soapstone response to triaxial load cycle and to provide data to

locate yield surface on an octahedral plane from 3=-30 o to 3=30
.

4.3.1 Triaxial Compression (TC)

The stress-strain curves for TC tests for 0= 2.0, 3.0 and

4.0 ksi (13.97, 20.69 and 27.58 MPa), are shown in Figs. 4.11 to

4.19. The test is conducted by increasing il and decreasing both

02 and a3 by equal amounts so that the value of uo remains csn.r.

The sample is initially loaded to hydrostatic pressure of the de-

sired value of ao, and then TC path is followed. The ultimate

state is well-defined in these tests.

Since '2 and a3 are equal, E2 and -3 should also be equal for

isotropic behavior, one can see a good agreement between these

strains from Figs. 4.11 to 4.19.

• !
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4.3.2 Simole Shear (SS)

Simple shear tests on soapstone samples are run with a =

3.0 and 4.0 ksi (20.69 and 27.58 ',Pa). Intermediate principal

stress (a2) is kept constant equal to the value of ao. The major

and minor principal stresses a and a3 are increased and decreased

respectively by equal amount so that co remains constant. The

stress-strain responses obtained from these two tests are shown

in Figs. 4.20 to 4.25. In two cases it is observed that the

intermediate principal strain is slightly compressive. A well-

defined ultimate strength level is reached in two tests.

4.3.3 Triaxial Extension (TE)

In the TE test, a3 and 02 are increased while a, is reduced

to maintain 0o at a constant level. Figures 4.26 to 4.31 show the

stress-strain responses for two TE tests at o = 3.0 and 4.0 ksi

(20.69 and 27.58 MPa) respectively. Since 01 and G2 are equal,

E l and e2 should also be equal for isotropic behavior. One can

see a good agreement between these strains from Figs. 4.26 to 4.31.

4.4 Octahedral Stress-Strain Relation

The octahedral normal and shear stresses aoct and T oct , and

the octahedral normal and shear strains coct and yoct are defined

in Eqs. (3.1) in terms of principal stress and strains. The octa-

hedral stress-strain curves obtained from CTC, TC, SS and TE tests

1j
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are plotted individually in Figs. 4.32 to 4.40. The slope of the

toct and yOct curve is two times shear modulus G. The average

shear modulus, G, is determined from these tests to be 614.99

ksi (4240.4 MPa).

4.5 Circular Stress Path (CSP

Figure 4.41 show the stress-strain responses for circular stress

path (csp) test at confining pressure of 4.0 ksi (27.58 MPa) and

octahedral shear stress, toct , of 1.0 ksi (6.895 MPa). The graph

of this circular path shows the major principal stress a1 , plotted

against the three principal strains. Figure 4.42 shows the three

principal strains plotted aggainst the angle of similarity oOct*

4.6 Ultimate Failire (Strength)

The ultimate condition is defined by asymplotic value of the

stress in the stress-strain response curve, as shown in Fig. 3.49

of the 15 specimens tested, 13 reached failure. TABLE 4.1 lists

the ultimate data for these specimens. Failed samples are shown

in APPENDIX B. Figures 4.43 to 4.45 show the plots of data in

l " r'2D' octahedral and triaxial planes, respectively.

Several conclusions can be drawn from examination of the

strength results shown in Figs. 4.43 to 4.45.

i) The octahedral shear strength of soapstone specimens

is strongly dependent upon the stress path (a or J )3''

(see Fig. 4.43).
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TABLE 4.1

ULTIMATE DATA FOR SOAPSTONE

(Compression Stress Positive)

0

Load Path Spec al *a2 C3 a Oct -oct vJ2D
(Fig. 2.16) No. (psi) (0si) (Isi) ps (Qsi) (osil 

az ox G y,.

C t T 4  1200 0 0 400 566 1200 693. Conventional -'

Triaxial T2  5561 1000 1000 2520 2150 7561 2633

Compression T 7834 2000 2000 3945 2750 11834 336C
(CTC) 1 __' '

T 0425 3000 3000 5475 3500 16425 4287

CZ X C y

Triaxial
Compression S3  4334 833 833 2000 1650 6000 2021

-o (Q(TC) - - _ _

(E= 600) l b182 1409 1409 3000 2250 9000 2756

S2  7394 2303 2303 4000 2400 12000 12939

z  x Ov __ _ _ _ _ _

Simple
Shear (SS) P3  3409 592 2000 2000. 1150 6000 1409

(C = 600) P2  4776 1224 3000 3000 1450 900 1776

P1  6548 1453 4000 4000 12080 2000 2548

, z x v '

Triaxial Mi 2743 2743 515 2000 1050 6000 1286
Extension

(TE) M 3955 3955 7091. 3000 350 9000 5
(0 = ) 2 5308 5308 1384 000 850 2000 226

*10 psi = 
6 .89 KPa

0~
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Observed

1 10 psi =6.89 kPa
*00Ct= 2 ksi
Acloct= 3 ksi
Oaoct= 4 ksi

*SS TC 30
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* 2

\30

2 3

Figure 4.4,2. Observed Ultimate Surfaces ir Octahedral
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ii) There is a direct relationship between strength and

confining pressure o = Jl/3.

• iii) The ultimate envelopes in the octahedral planes are

non circular, i.e. they depend on stress path (0).

iv) Finally, any ultimate (failure) criteria used to

predict the strength behavior of soapstone must

include the effects of the tensile stresses as shown

in Fig. 4.45.

C

- .-



CHAPTER 5

A REVIEW OF EXISTING LITERATURE

5.1 Introduction

* In the first part of this chapter, some fundamentals of theory

of plasticity are presented. This will be followed by the plas-

ticity models developed to characterize nonlinear and inelastic

* behavior of geological materials.

5.2 Some Fundamentals if Plasticit,' Theory

Theory of plasticity describes the rate independent, nonlinear,

inelastic responses of materials. Formulation of a constitutive

law for engineering materials based on th~e theory of plasticity

includes the following four elements:

i) Yield condition

ii) Stress-elastic strain relationship

*iii) Flow rule

iv) Hardening rule

These phases will be explained in the following sections.

5.2.1 Yield condition

The yield criterion can be defined as the limit of elastic de-

formations expressed by a combination of states of stress. For a

one-dimensional state of stress, the yield criterion can be easi ly

visualized. Consider the uniaxial stress-strain curve for metal

165
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under simple tension as shown in Fig. 5.1 when the load is increased

gradually, the material behaves elastically up to point A, and re-

* gains the original state if the load is removed. When the stress

level goes beyond point A, the material experiences irreversible

straining. If the metal specimen is stressed beyond point A, say

* up to B, and then unloaded, there will be some permanent or irre-

coverable deformation in the body, and the material is said to have

undergone plastic deformations. It can be seen from Fig. 5.1 when

* the specimen is loaded from A to B, both elastic and plastic de-

formations will occur, and this is known as elastoplastic behavior.

The point A on the stress-strain curve is called the elastic limit

* and the corresponding stress level is called the yield stress and

denoted by ay as shown in Fig. 5.1. Thus, for a uniaxial stress-

deformation problem, the yield condition can be expressed as:

* F = o- = 0 (5.1)Y

where a is the state of stress at any state of loading history.

Although yield condition for uniaxial case is quite simple. How-

ever, under multiaxial states of stress, this becomes compli-

cated, and a mathematical expression involving all stresses

is often required. Establishment of this mathematical expres-

C sion, known as the yield criterion, has to be done based on

experimental observations.

In view of the complexities involved in yielding of ma-

terials under three-dimensional states of stress, it is con-

0

[J ~
OV
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I = Yield Stress
0 I

c P =Plastic Strain

c= Elastic Strain
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Figure 5.1. Typical Uniaxial Stress-Strain Response
in Elasto-Plastic Deformation.
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venient to define a scalar function, F, as the yield criterion.

A general expression for hardening (softening) yield function

* F can be expressed [15, 16, 17, 22, 63, 31, 44, 73, 74, 7] as

F = F (Ji, I?, K., am) (5.2)
1' m

where Ji i = 1,2,3) = invariant of the stress tensor, I?,

(i = 1,2,3,4) = invariant of the plastic strain tensor,

K. (j 1,2,3,4) = Joint or mixed invariants, K1 = aij j

K =a a K = . e Pi and K = a a p Ei
2 ij jk i' 3 ij ik ki 4 iij k Ekli'

a = scalar (tensor) valued internal state variable. Using
index notation, invariants Ji and ! are defined as

W5i

Jl = ii, J2 =  1/2 ij ij, J3 = 1/3 ai j oI I

0 IP = 1/2 e P P., and I = 1/3 J Ej 6Pi
1 ii' 2 i j 3 1 jk ki

It should be mentioned here that when the joint invariants are

not included, the principal directions of the stress and plastic

strain tensor will be coincidental and represents a material

which is isotropic initially and undergoes isotropic hardening.
0

5.2.2 Stress-Elastic Strain Relationship

For three dimensional bodies, the generalized Hooke's law

for a linear elastic isotropic material can be written in the

incremental form [22, 38, 39] as
dS.

de j _ 1 - 2v i (dakk) + i (5.3a)

Where dcej = elastic part of the total incremental strain, di
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= Kronecker delta, dakk = incremental spherical or hy-

drostatic stress, dSij = incremental deviatoric stress tensor,

* E = Young's modulus, G : Shear modulus and v = Poisson's

ratio.

or

* daj= C dE:l (5.3b)
ii ijkl kl

Where doij = incremental stress, Cijkl elastic constitutive

relation tensor.

In the theory of plasticity, the strain increment dFij due to a

stress increment dc ij can be decomposed into elastic and

* plastic components; here it must be assured that the strains are

small [38]. Then

di + d2 (5.4)

* Where superscripts 'e' and 'p' refer to elastic and plastic

strain, respectively. Substituting for dEl in Eq. (5.3b) gives:

dcrij = Cijkl (dekl - d Pl) (5.5)

5.2.3 Flow Rule

When the state of stress reaches the yield criterion f,

the material undergoes plastic deformation; this is also called

plastic flow. In the theory of plasticity [38, 39, 40]

incremental plastic strain is defined by assuming the existence

of a function, Q, called the plastic potential. In general,
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the plastic potentional, Q, is a function of the state of stress,

Sij, and the incremental plastic strain is proportional to the

gradient of Q. Then the increments of the plastic strain can

be expressed as

dP. = Q (5.6)

which is referred to as the normality rule; here, 6X is a positive

scalar factor of proportionality. For some materials, the

plastic potential function, Q, and the yield function, f, can

be assumed to be the same. Such materials are considered to

follow the "associative flow rule" of plasticity. However, for

* many geological materials, the yield function f and the plastic

potential function Q are often different. These materials are

considered to follow "non associative flow rulies" of plasticity

* [22, 53, 49, 62, 58, 71, 23, 6]. In this dissertation, only

associative plasticity concept is utilized.

5.2.4 Harding Rule

As seen in Fig. 5.1 a real material shows some increase

in stress even after the elastic limit. This can be work

or strain hardening. If a material is assumed to experience

no hardening, then it is called perfectly plastic. Classical

Tresca, Von Mises, Mohr-Coulomb, and Drucker-Prager yield

criteria belong to this category. Here the shape. size, and

orientation of the yield surface remain unchanged during plastic
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straining as shown in Fig. 5.2a. Hardening rules are intended

to define the process of strength gain in a material due to

0 permanent straining in comparison to perfectly plastic response.

In the theory of plasticity, there are three kinds of harden-

ing rules: i) Isotropic hardening, ii) Kinematic hardening,

0 and iii) Combination of isotropic and kinematic hardening.

These hardening rules have been explained by Desai et al [22, 23a]

and Faruque [32] in detail. In this section, these hardening rules

0 will be explained briefly.

i) Isotropic Hardening

If the material behavior is not affected by orien-

0 tation, it is called isotropic. Isotropic hardening

takes place when the initial yield surface in the

stress space expands uniformly without changing its

40 shape or form during plastic flow and the center of

the yield surface remains the same during the ex-

pansion. The initial yield surface f0 is often de-

fined as the locus of stress states when the first

yielding occurs. A typical isotropic hardening in

stress space is shown in Fig. 5.2a.

ii) Kinematic Hardening

This hardening rule was introduced by Ishlinski

[40] and Prager [61, 60] and is known as Prager's

kinematic hardening rule. Here the shape and size
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of the yield surface remain the same but the

yield surface can translate in the direction of

the plastic strain increment in the stress space

without rotation. A typical kinamatic hardening

in stress space is shown in Fig. 5.2b.

iii) Combination of Isotropic and Kinematic Hardening

This hardening rule involves changes in size, shape

and orientation of the yield surface. It is assumed

that the yield surface expands as well as trans-

lates in the stress space. Also, the shape of

the yield surface may not remain the same. A typical

anisotropic hardening in stress space is shown in

Fig. 5'.2c.

5.3 Some Plasticity Models for Geoloqical Materials

In this section, a brief review of classical plasticity as

well as new plasticity models to characterize nonlinear and

inelastic behavior of geological materials will be described.

5.3.1 Tresca Yield Criterion [80]

According to this criterion, yielding will initiate when

the maximum value of the extreme shear stress is reached. One of

the major drawbacks of the Tresca yield criterion is that it does

not include the effect of the intermediate principal stress.

Figs. 5.3a and 5.3b show geometric representation of Tresca

yield condition in two and three dimensions, respectively.
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It is seen from Figs. 5.3a and 5.3b that Tresca yield criterion

plots as a discontinuous surface which poses difficulty when

(

* associated plasticity is adopted. Other major drawback of

Tresca yield criterion is that the yield strength in tension

and compression has been assumed to be equal.

5.3.2 Von Mises Yield Criterion [81]

The Von Mises Yield Criterion can be expressed as

*F = Y1--- k = 0 (5.7)2D

where

J 1/ + 2 a2 2 258a
~2D 16[(a 1  2) +( 2  3) +( 3 - a1) ] (.a

* or

2!

2D 3/ Oct (5.8b)

and k is the strain hardening parameter. In pricipal stress

space, this yield criterion plots as a right circular cylinder

centered on the hydrostatic axis. Figs. 5.3a and 5.3b show geo-

metric representation of Von Mises yield conditions in two and

three dimensions, respectively. For the hardening behavior, the

radius of the yield surface will increase when the stress state

is such that the yield surface is reached as deformation occurs.

Thus the dependence on the parameter k. This criterion is seen

to be independent of hydrostatic pressure as well as shear stress

determination. The yielding of metals is described farily well

by the Von Mises Criterion. However, for a material such as

0!
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concrete or rocks, the yield or ultimate (failure) strength

shows a dependence on J1and J 3 implying that the Von Mises

Criterion would not be valid for representing the strength of

concrete and rock materials.

5.3.3 Mohr-Coulomb Failure _Criterion

* According to the Mohr-Coulomb Criterion, the shear strength

increases with increasing normal stress on the failure plane:

-r c + a tan (5. 9a)

* or

T =C + ( C 1-C 3) tan 0(5.9b)

Where -r is the shear stress on the failure plane, c the co-

* ehesion of the material, a the normal effective stress on the

failure surface, p the angle of internal friction, 1 1 major

principal stress and a 3 minor principal stress. Fig. 5.4 shows

* the cross-section of the Mohr-Coulomb yield criterion on the -

plane which passes through the origin of the principal stress

space. Eq.- (5.9) represents an irregular hexagonal pyramid in

* the stress space as seen in Fig. 5.4. It is evident from Eq. (5.9)

that the Mohr-Coulomb criteria does not include the effect of

the intermediate principal stress.

5.3.4 Drucker-Prager Yield Criterion [4]

Extended Von Mises yield Criteria is proposed by Drucker

and Prager where all the principal stresses are considered.



177

00

1

Drucker-Peager Yield
Criteria

""- - -Mohr-Coulomb Yield
S- s Criteria

* I

0{

Figure 5.4. Mohr-Coulomb and Drucker-Prager Yield
Criteria on T 2-Plane.•
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Drucker-Prager yield criteria can be expressed as:

F - -x2D 1 - k 0 (5.10)

where

l= 0.l + a2 + a3 = 3 aOct (5.11)

with J2D given by Eq. (5.8a). ct and k are the material constants.

Note that this yield function reduces to the Von Mises cylinder for

o = 0 (purely cohesive materials). Eq. (5.10) represents a

right circular cone in principal stress space, centered on the

hydrostatic axis as shown in Fig. 5.5. On the r-plane, it plots

as a circle and is shown in Fig. 5.4. As shown on the failure

surface, the Drucker-Prager criterion does include the effect

of the hydrostatic pressure. However, as in the Von Mises cri-

terion, the dependence on J3 (or Lode angle, 0) is not incor-

porated. This can be seen in the T-plane because the Drucker-

Prager surface plots as a circle.

The Drucker-Prager failure criterion is more realistic than

the Von Mises criterion for describing the failure of plain con-

crete and rocks. However, it is still deficient in many aspects

As seen in Chapter 3 and 4, plain concrete and soapstone

. exhibit a strong stress path as well as confining pressure de-

pendency. In the octahedral plane for instance, the ultimate

(failure) envelope is definitely non-circular. Therefore any

* criterion used to predict the ultimate failure of these

0 i
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Figure 5.5. Von Nlises and Drucker-Prager Yield Criteria
in Principal Stress Space.
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materials cannot neglect the dependency on J and J (a and o)1 1 3 Oct

as is done in the Von Mises Criterion or simply J3 as in the

Drucker-Prager Criterion.

5.3.5 William-Warnke Five-Parameter Failure Criterion [84]

In the model developed by William and Warnke for the triaxial

failure surface of concrete type materials, the failure envelope

is fully described in the principal stress space by assuming

isotropic material behavior. It is basically a cone with curved

meridians and a non-circular section as shown in Fig. 5.6. Since

isotropic material behavior is assumed, only a sextant of the prin-

cipal stress need be considered for the mathematical model, the rest

will be symmetric. The surface is represented by hydrostatic

and deviatoric sections. The hydrostatic section forms a meri-

diinal plane, containing the hydrostatic axis as an axis of

revolution. It can be represented in Toct- a0 ct stress space

as shown in Fig. 5.7 where the hydrostatic axis lies along the

abscissa. The deviatoric section lies in a plane perpedicular to

the hydrostatic axis, described by Polar Coordinates r and 0 as

shown in Fig. 5.8.

The failure surface function F (G) for the five-parameter

model is expressed as:

1 Ta

F(a) a F (c , Ta, (D r ,) Ifcul 1 (5.12)

= 0 for material failure

0 I



* 181

3

Figure 5.6. Failure Surface for Plain Concrete
{Willam, et al [83 & 84]}
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where

Ca = average normal stress

= 1/3 (aI + a2 + a3 ) (5.13)
OYOc

= aO~t

Ta= average shear stress

1 . -[(i - 2)2 + (a2 3)2 + (a3 - I) 2 1/2 (5,14)
VT5

and

f = uniaxial compression strength

(used for normalization)

William and Warnke assumed tension positive when formulating

their failure criterion.

* For materials such as concrete and rocks, the yield or

failure show a dependence on tensile strength, ft. implying that

the Willam and Warnke would not be good enough for representing

* the strength of concrete and rock materials since the failure

criterion does not include the effect of tensile strength.

5.3.6 Critical State Model [651

This model is based on the observation that on a deviatoric

stress (q) vs. mean pressure (p) plot, the ultimate failure

points lie on the straight line, which is defined as the critical

state line. After reaching a critical state, there will not be

any further volume changes. Fig. 5.9 shows a typical critical

* state line on q-p plane where q is the difference between the

major and the minor principal stresses, and p is the confining

pressure.
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In addition to the failure envelope, functions have been

developed to describe the yielding characteristics of geological

material. These yield functions represent yield surfaces of

constant plastic volumetric strain. Below a yield surface

material is assumed to be elastic. Beyond the yield surface

the material experiences plastic strains.

The modified Camclay yield function [64] cdn De writtenl

as:

SF= q2 - M2POP + M2P2 = 0 (5.14)

where M is the slope of the critical state line on the q-P plot,

and Po is the hardening parameter. This yield function represents

a portion of an ellipse between the failure envelope and the mean

pressure (P) axis that corresponds to yield locus, as shown in

Fig. 5.9. The hardening parameter, Po' varies for each yield

*surface although it is constant along each individual yield surface.

It is observed experimentally that the linear failure surface

and circular shape of the yielding cap may not compare with the

experimental data with reasonable accuracy. Subsequently, several

extensions and modifications of the Cap model are proposed for

geological materials by Dimaggio and Sandler L.-Yl %andler and

R Rubin [66] Roscoe, 'choiel , and Worth [65]; Lade L451;

*A. 0.A~.
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Desai, Phan and Sture [21]

5.3.7 Model Proposed by Lade
S

The following three-parameter failure criterion for concrete

proposed by Lade [2] stems .from a general, three dimensional

failure criterion previously developed by Lade [45] for cohesion-
S

less soils. The criterion is expressed in terms of stress in-

variants and involves three materials parameters describing the three

independent characteristics for a concrete failure surface: the

opening angle of the failure surface or friction angle, (2) the

curvature of the failure surface in planes containing the hy-

drostatic axis, i.e. curved meridians, and (3) the tensile

strength.

The failure surface function F(a) for this three-parameter

criterion is expressed in terms of the first and third stress

invariants as follows:

3 a

= 0 for material failure

where

l 1 +  2 + a3 (5.16)

3 =  1 " a 2  * G3 (5.17)

P = atmospheric pressure (positive) in the same

unit as the stress

's are defined as translated the principal stress space along

Ls
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the hydrostatic axis to include effect of tensile strength in

Lade's failure criterion.

5.3.8 Model Proposed by Desai

Desai [15] chose a number of truncated form of F (Jl,

J j/2 , J 3), Eq. (6.1), and evaluated them at ultimate (stress)

condition for four different materials and for different stress

paths. It may be mentioned that the ultimate condition is de-

* fined by the asypmtotic value of stress in the stress-strain

response curve, as shown in Fig. 3.39. Of all the forms Desai

[15] used, the form of eq. (6.5) essentially showed an in-

* variant value of C at the ultimate condition for all the materials.

A single yield surface (function) here is used instead of two

or multiple yield surfaces. A comprehensive description of

* Desai's model is given in the following chapter.



CHAPTER 6

PROPOSED CONSTITUTIVE MODELS

6.1 Introduction

Characterization of stress-deformation behavior of concrete

* and rocks have been a subject of active research for a long time.

Linear elastic, nonlinear (piecewise linear) elastic, elastic-plastic

and endochronic models have been proposed and used by various in-

* vestigators and the literature on the subject is very widespread.

The necessity of new developments in the area of constitutive

modelling stems from the fact that none of the available models is

0 general enough to provide a basis to characterize the behavior of

different classes of materials under a variety of loading conditions.

Thus, different constitutive models are required for different ma-

to terials as well as for different histories of loadings. The

techniques proposed by Desai [15, 23] can provide significant

flexibility in terms of choosing appropriate yield conditions

for plasticity-based constitutive laws. It should be noted

here that some ofl the terms in the polynomial can be discarded

at the outset, depending upon particular characteristics of

given materials.

The major objective is to present a general model to

characterize ultimate failure and hardening responses in the

context of the theory of plasticity for concrete and rocks.

189
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6.2 Polynomial Representation of the Yield Condition

The yield functions used in the past, Refs. [25, 29, 37, 69],

* can be considered to be polynomial functions expressed in terms of

stress components or invariants of the stress tensor. Desai [15]

proposed the following general functions as a complete polynomial

• in Jl J2
I 2 ,and J3

I/3 "

1/2 +1/3 2J /2+3 I/3+F(JI~ 2 'J13 ao+al1 I + 1 2 1/+.3 313

L 2+ 5 1 /2+a6j 7 I/3+

a 8 J 2  3 1/ 3 +a 31/3 +ia1 3+ (6.1)

3 00

a 11/ 1 2 1 1 2 +U 1 2j 1/3+a13 j2+

a17 2 2 12 1 3 

a 14 1 1 2 /3+ 5j2
13 . 3+ . 2 2/3.

a1 4JIJ2 1 2  3  1

17 J132  18

3/2 I/3 'j.....

a 1 9 JI1J2 l ~3

0
Where J, 2 J3 are the three stress invariants given by

J1 =ail (6. 2a)

J2 l /2 jij uji (6. 2b)

J3 = a/.i aj~k  (6. 2c)

the fractional powers of J2 and J3are adopted to render the material

0

respons fucin rcntnst e lesoa.Tefnto
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in Eq. (6.1) can also be expressed in terms of J2D and J3D' the

second and third invariants of the deviatoric stress tensor res-

pectively. It may be noted that the yield function can be expanded

up to any desired order. The constants, ti (i = 1,2...,.n in Eq.

(6.1) are material response functions. In general, all the material

response functions can be expressed in terms of the history of

deformation as well as a number of other tensor-valued and scalar-

valued internal variables. Thus, ci (i 1 1,2,...,n) can be express-

ed as:

ai =ai (fd emnp' WP ' aij .... T1 I'2"'-'"N) (6.3)

Where fdei.P = history of plastic strain, WP = Jcyi d = plastic

work, aij = tensor-valued internal state variables, and -I , -2...

nN = scalar-valued internal state 
variEbles.

Eq. (6.1) can be considered a special and simplified case of

the general representation proposed by various investigators, Riviin

and Ericksen [63], Green and Naghdi [35], Shrivastava et al [72],

Baker and Desai [7] and Sawczuk [67]. For instance, for an initially

isotropic material, F can be expressed [15, 17, 23, 16] as

F = F( Ji, Ii P ,IK am) (6.4)

Where iP (i = 1,2,3) = invariants of plastic strain tensor

eij p , Kj (J = 1,2,3,4) are joint or mixed invariants of the stress

and plastic strain tensor and am (m = 1,2,....n) are (scalar) valued

0 functions such as plastic work. It has been shown that inclusion
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of K. can permit (induced) anisotropy during plastic straining

[7, 37]. Equation (6.1) investigated herein is a special case of Eq.

(6.4) in which F is expressed in terms of Ji with yielding and

hardening behavior incorporated in the coefficient cLi which are

treated either as material constants or response functions in

terms of trajectories of total, volumetric and deviatoric plastic

strain. The material is assumed to experience isotropic harden-

ing; hence, K. are not included at this time.

Desai [15] chose a number of truncated forms of F(Jl, J2 J3)

and evaluated them at ultimate (stress) condition for four different

materials and for different stress paths. It may be noted that

the ultimate condition is defined by asymptotic value of the stress

in the stress-strain response curve. Of all the forms Desai [15]

used, the form

Jl J3I/3 = C (6.5)

J 2

essentially showed an invariant value of C at the ultimate conditions

for all the materials. It is important to note here that the form

given by Eq. (6.5) is not the only form which assumes an invariant

value at ultimate condition. It is possible to construct a number

of other such forms by choosing appropriate terms from the poly-

nomial given by Eq. (6.1).

It was observed in Ref. [15] that the yield functions used in

criteria such as Tresca, Van Mises, Mohr-Coulomb, Drucken Prager,
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critical state and cap are truncated forms of F, Eq. (6.1). Also,

the models recently derived by Lade [45] and Iatsouka and Nakai

* [50] from laboratory observations for soils are also truncated

forms of Eq. (6.1); modified forms of the former are also recently

used to describe behavior of concrete [47, 70].

6.j Proposea Gonstitutive Model

A number of investigators have proposed models for defining

the failure behavior of concrete [77]. One of the early models

was proposed by Kupfer and Gerstle [43] and involves (separate)

definitions of failure surfaces for biaxial tension, biaxial com-

pression, and tension--compression zones. Argyris et al [3, 5],

Kotsovos and Newman [41], Ottosen [57], Willam and Wamke [83],

Lade [48] and Traina et al [79, 78] and others have proposed

models for describing failure behavior of concrete and rocks.

Willam and Warnke's model requires Five parameters to define

failure envelope and is expressed in term of average hydrostatic

stress (J1/3), average measure of octahedral shear stress

(Ta = 2/5 J2D ) and a measure of lode angle 0 (Cos3o = v-J 3 9 /J2

The four parameter model by Ottosen [57] involves use of quantities

proportioned to octahedral shear stress (To = T, 1 2i e an

normal stress (Jl/3), and the angle # shown in Fig. 1.

Lade [48] proposed application of a model with F expressed

* in terms J1, J2 and J3 for predicting failure behavior of concrete.

Schreyer [79] proposed a modification o' Lade's model that permits

%
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yield surface to intersect J -axis.

Elastic-plastic models for describing the hardening response

* of concrete and rocks have been proposed and used by various re-

searchers: Mroz [54], Sudain and Schnobrich [75], Kupfer and

Gerstle [43], Wu [86], Chen and Chen [12], Argyrin et al

* [4, 3, 5], Byukozlurk [11], Andenaes et al [2]. Murray et

al [55], and Chen and Ting [14]. Plasticity models including

fracturing (and strain-softening) are proposed by Dougill [26, 27]

*0 Bazant and Kim [8] and Bazant [9, 10]. In the case of the

hardening behavior, these concepts involve definition of initial

yield surface representing the elastic limit, and then subsequent

loading, yield or cap surface representing continuously yielding

behavior of concrete and rocks. The final yield surface in the

failure or fracture surface is often defined as the state

of stress at which the change in volume is zero.

The yield function F is often expressed in terms of J and J

(or J3D); the models by Lade [48] and Traina et al [79] involve

the invariant J3 also. Bazant's [9, 10] model to include frac-

turing is based on two loading or yield surfaces, one expressed in

terms of aij and a hardening parameter, whereas the second in terms
of Fij and another hardening parameter. This model possesses a

number of useful capabilities such as effect of mean pressure

(J11 3 ) resulting in elastic or plastic volume change, strain-softening,
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plastic volume change due to shear, and failure behavior; it is

capable of capturing behavior for different loading paths like

torsion-compression, uniaxial, and nonproportional triaxial.

One of the major drawbacks of all these models is that the

yielding is controlled by two separate yield functions which in-

tersect each other with a slope discontinuity. This results in

nonuniqueness of the normals at the points of intersection. In

the associated theory of plasticity, the incremental plastic strain

is assumed to be normal to the yield surface at the loading point.

Thus, the direction of incremental plastic strain is not defined

at the point of intersection of two yield surfaces (see Fig. 6.2)

This problem can be eliminated if a single yield surface (function)

is used instead of two yield surfaces.

The definition of J3 used in Eq. (6.4) is different from

J 3 ul c2 G3 often used. This is because if one of the (principal)

stresses is zero or near zero, J3 = a. 02 03 may cause (com-

putational) difficulties [15]. A modified form of the model pre-

sented previously [15, 16, 17, 19] to account for certain behavioral

aspects of concrete and rocks is developed and presented herein.

In the following descriptions, the major attention is given to the

modi fi cation.

It may be noted that in the isotropic hardening plasticity theory,

the initial yield surface expands continously until the ultimate or

Failure state is reached. However, the shape of the surface

-

____ vv h, -__
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'JC2D I

F1

Figure 6.2. Typical Example of Two Yield Surface
Plasticity Model.
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remain unchanged. Geological materials such as soils, rocks and

concrete exhibit plastic response even when the applied load is

small. This means that hardening starts from the very beginning

and the material continues to harden plastically until failure

is reached. This hardening process is described by the harden-

ing law of plasticity theory and will be discussed later.

One of the functions used to define yield in the context of

incremental plasticity for describing behavior of soils [15, 16, 17,

19, 23a], on the basis of the form given by Eq. (6.1), is given by

F = J2D - FbFs (6.6)

where J2D is the second invariant of the deviatoric stress tensor,

Fb is the basic function and Fs is the shape function.

A special form of Eq. (6.6) is given by:

F (J I l J D J D =J2 (- ot l +  ¥J ' 2 )  (1 _ S r. m

D, 3D ) = - )1 r = 9 (6.7)

where y, , I are response functions, Sr = J3DI/3/J2D I/2 is

a stress ratio where. J3D is the third invariant of deviatoric stress

tensor. The functionals a, y, n are assumed to be material constants,

m = -1/2 for many geological materials, and a is assumed to be the

growth (hardening or softening) function.

Based on the Eq. (6.7), a new constitutive model is proposed

to describe both failure and yielding of pressure sensitive ma-

terials such as concrete and rocks. The model agrees with the ex-

. perimental evidence regarding the shapes of yield surfaces on various

planes. Moreover, both ultimate failure and yieldinq are defined

01%
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by a single yield surface.

In order for the ultimate criterion given by Eq. (6.7), origi-

nally formulated for cohesionless soils [19, 23a], to be applicable to

concrete and rocks, the cohesion and tensile strength sustained by

concrete and rocks must be included. This is done by translating

the principal stress space along the hydrostatic axis as shown in

Fig. 6.3 by the addition of a constant stress R = a.pa added to

the normal stresses. The modified function is given by:

- 2D jln + yjl 2 ) (1 - Sr) -12 0 (6.8)

where

l 1 * + a 2* 
+ a 3  (6.9a)

1/6 [(c1* - 2*)2  + (c2 " - a3*)2 + (I* - 3 2 (6.9b)

3D 33
13 1 /3 (a1 *3 + G2*3 + G3*) (6.9c)

J J* = 2/3 R J 2D* 1 *3 (6.10)

27

The corresponding normal stresses C 1 * 2 and -7 * in Eqs. (6.9I

and 6.10) at ultimate state are expressed as

* = + R (6.lla,'

+  R (6.11b)

3  3 + R (6.11c)

R = aP (6.12)
a

where a dimensionless number and Pa = atmospheric pressure. For

cohesionless materials, R = 0, and the function at ultimate in Eq.

(6.8) reduces to that in Eq. (6.7).

Nr
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Figure 6.3. T1ranslation of Principal Stress Space Along
Hydrostatic /\x~s to include Effect of -ensile
Strength in Ultimate Criterion.
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It is observed experimentally that the shape of the yield

locus of materials such as concrete and rocks on the 7-plane

0 (or octahedral planes) changes continuously with J1. It is found

then at high pressures, the yield locus plots almost like a circle.

As the confining pressure WO is decreased, the shape of the yield

locus gradually changes towards a triangle with smooth rounded cor-

ners [48]. At the limit, when Jl = 0 the yield locus becomes

triangular with vanishing rounded corners. Fig. 6.4 shows typical

yield luci at the limits as well as during transition.

Consider that B in Eq. (6.8) is a function of Jl defined by

5 = 0e - 1 Jl (6.13)

where 8 and 81 are material constants. It is seen from Eq. (6.13)

that when J = 0, 3 = Bo and as J1 
-* oo, 5 -, .

0 Plots of the proposed yield function on the Y'S2D - Jl (for

TC, SS, TE), 7, octahedral, triaxial and biaxial planes are shown

in Figs. 6.5 (a,b,c) through 6.9 respectively, for the soapstone

40 described subsequently.

6.3.1 Properties of the Proposed Yield Function

The model proposed here is expressed in terms of J J 12D, J3D
with hardening defined by using various measures of plastic strain.

Some of the distinguishing features of the proposed model are

stated in the following page:

. ..
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(1) Figure 6.5-6.9 show that the proposed model involves

only one continuous surface which describes yield or loading sur-

faces by a single function, which also describes the ultimate be-

havior; as stated earlier, the traditional failure is defined in

the proposed model by one of the functions with = u

(2) Because only one function defines the entire behavior

(hardening and ultimate), the number of required parameters is

smaller than the previous multi-surface models.

(3) Since intersections (singularities) of two or more sur-

faces are avoided, the model is easier to implement for numerical

computations.

(4) The function F (Eq. 6.9) plots continuous and convex in

the stress spaces, Fig. 6.5-6.9 for both hardening and ultimate

responses of many (geological) materials. Moreover, it intersects

the JI-axis at right angles. As a result, it can be implemented

in the context of the classical theory of plasticity based on the

stability criterion [29].

(5) Material like rocks, concrete, broken rock, aggregate and

ballast, and materials experiencing fracturing and softening near the

ultimate condition for low confininq pressure, can exhibit nonconvex

yield surfaces; this response is similar to the star-shaped (ultimate)

yield surfaces observed for metals [85]. This may be partly due

to the fact that the ultimate strength for these conditions under

certain stress paths such as extension, Fig. 6.5c car be much

lower than that under other (compression) stress paths.

S% . . . . - . . - . - - - - , - % . ., , ' - , b . -
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(6) A single definition of growth function . can simulate nar-

dening (described subsequently) and include the effects of stress

path, volume change and coupling of shear and volumetric responses.

As a result, the model is simplified significantly.

6.3.2 Growth Function, cc

* The response function a is called the growth or evolution

function. In general, the functional form of a can be written in

the following form:

a = a (dEijP, WP , aij ... , n1, n2,..nN, T) (6.14)

the arguments of a are defined in Eq. 6.3. The variable T in

eq. 6.14 is the temperature. In general, a large list of history

dependent parameters can be chosen to express the growth function i.

In this study, however, cc will be made function of single parameter,

0 = f(dijP de ijP) 1/2 (6.15)

where E is the trajectory of plastic strain in a nine-dimensional

Eulidean space formed by the components of the incremental plastic

strain tensor. The parameter E contains both volumetric and de-

viatoric plastic deformations. Thus c can be split into two parts

as [17]
ED = f(deijP deijP)112  

(6.16)

V = l fd kkp  (6.17)
VT-

where ED and EV are the deviatoric and volumetric part of 7, res-

pectively and de ijP is the incremental deviatoric plastic strain
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tensor defined by:

de. P de. - 1/3 de P 6 (6.18)
ijP d ijP I 3 d kk ij

* with these definitions of , we can now define a in the form:

al= , (6.19)

V 1

* where a1 and q, are the material constants associated with plastic

hardening.

Typical plots of ,/2D - Jl of various -, are shown in Fig. 6.5.

It is seen that the yield surface plots convex on the 4J2D - Jl

plane. Such convexity is required to ensure stability of the ma-

terial in the plastic range.

It is mentioned earlier that the parameters IV and D are the

volumetric and the deviatoric part of the total plastic strain

trajectory, . Now consider two ratios, rv and rD, such that:

qV (6.20a)
rV -

O (6.20b)rD = -

The ratio, rV, describes the plastic volume change behavior

under a general loading history. The ratio, rD1 describes the

deviatoric behavior of the material point during inelastic straining.

Fiqures 6.10 and 6.11 show the plots of r, - r,, for a plain con-

crete and soapstone (described subsequently). It can be seen

that irrespective of the stress path followed, the relation be-

tween rV and rD can be assumed to be essentially invariant. For

an isotropic material that rar'!or% isetropically, the relation



STC-TE Test v =4 ks .)

0 TC Test (7 = 6 ksL)
0

SS T Test (7 = 6 ksi)
0

* SSTest (:= 6ks-L)

Test (c = ksi)

TE Test (z70 8 ksj)

V + 1.v psi =6.89 NIpa

+0

0 i

CD

>

C,.'
0 I

0.00 0.20 0.40 0.60 0.60 i.00

FHgure 6.10. r,, -r, Plot Cbtained frorm a numter o' -xi

e;sts 'ocr the Vain Concretc.



214

W CTC Test (7, = 1.0 ksi)

O CTC Test (, = 2.0 ksi)

0~ CTC Test (7 = 3.0 ksi)

_ TC Test (a ° 
=  2.0 ksi)

X TC Test (:7 3.0 ksi)
0

+ TC Test ( = 4.0 ksi)

TE Test ( = 3.0 ksi)
co y

w TE Test (u = o .0 ksi)

- SS Test (o = 3.0 ksi)
L SS Test (c °o = 4.0 ksi)

o 1.0 psi 6. 9 kPa

> Y

r D

00

00

0.00 0.20 0.40 0.60 0.80 1 .00

rD

Figure 6,1 . rV - r Plot Obtained 'rom a Number of Triaxial

Tests for the Soapstone.



215

is bonded by unity. At the end of HC, rD 0 and rV = 1, near

the ultimate (or in the case of nonfrictional materials) rV

0 0, and rD - 1.

6.3.3 Elastic-Plastic Constitutive Relations

The principles of continuity and consistency in Drucker's

postulate [29] enable one to decompose an incremental strain tensor

into elastic part and plastic part (assuming small strain) as

de i = de. e + dEij (6.21)

where the superscripts e and p refer to elastic and plastic, res-

pectively. The stress-elastic strain relationship can be written

* in form:

daij = Cijkl dekl e (6.22)

where Cijkl is the elastic constitutive relation tensor. dE kle

0 is elastic part of the total incremental strain dckl. Substituting

for dEkle in this equation gives:

daij = Cijkl (d kl - d'klP)  (6.23)

In general, the yield function may be written as:

F = F (aij' d .ijP) <-  0 (6.24)

with equality during yielding and negative during unloading. With

the assumption of the normality principle and associated flow rule,

the incremen of plastic strain must be normal to the yield surface;

4
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ij = dX F (6.25)
G i j

Where dX is the unknown hardening parameter giving the magnitude

of the plastic strain increments, with the direction governed by

* the normality rule. The consistancy condition [28, 18] is given

by equality,

dF = 0 (6.26)

* Thus, the consistency condition can be restated as

=F dai  +F dEi  (6.27)
ij + iP 1 =

0 After rearranging, it can be written as:

DF dc ij 9 F p dij p (6.28)
cij i

substituting the Eq. (6.23) and (6.25) in (6.28)

F dP pF X i (6.29)
3(iJ C ijkl (d kI d dkl (6.29)

or

dX([ - F ;F + ;F F Cijkl) = 1F Cijkl dc (6.30)
3ij p ;ij Gij 1 3Cij3

So the scalar parameter of proportionality can be written as:

F Cijkl dkl

di k k (6.31)
(3F ?F Cijkl F dF )

3( -: ij ijkl Th - p
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Equation (6.31) when substituted back in Eqs. (6.22) and (6.25)

yields:

*du*.i j = Cik (dek ___ a (6.32)

3a

or Crskl 3F 3F C ijl

da. . = (C ik 301-0 Dij )E dcl (6.33)
3 ijV 3F C. ijl F - 3F DF

13 30kl 13 0..

or

Gda..(C eC P) kl(.4
13 ijkle- ijkl dkl(.)

This can be rewritten as:

da. = C -P dC-k (6.35)13 ijki k

where C - is known as the elasto-plastic consti'tutive tensor.

* F and 3F must be evaluated from a given yield function.

3F in Eqs. (6.31) and (6.32) can be expanded by the chain rule.

3F DF 3% 3F 3J 2D 3F J 3D (6.36)

13 13 ii 2D Tii ) 3D ii

or gradient of F with respect to ojcan be expressed as:

3F ;F S.~ ~ + F ( k k 2/3 J2D Sij) (6.37)

1 2D 20

* where 6i . Kronecker's delta and S.i deviataric stress tensor.
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6.4 Determination of Materidl Constants

* 6.4.1 General

The proposed model has a number of material constants including

the Young's modulus, E, poisson's ratio, v, shear modulus, G, and

* bulk modulus, K. Determination of such constants for any material

requires a comprehensive series of laboratory tests with number of

loading, unloading and reloading cycles.

The proposed constitutive model is, in general, applicable

for any pressure sensitive material. In this dissertation, however,

only concrete and rocks will be considered.

* Seven different concretes and rocks are considered here to

obtain the material constants associated with the proposed constitutive

model. These are i) a plain concrete under low confining pressures.

* ii) a plain concrete under high confining pressure, iii) Steel

Fiber Reinforced Concrete, iv) Soapstone, v) Sandstone, vi) !Jester-

ly Granite, and vii) Dunham Dolomite. The stress-stain responseS

* for plain concrete under low confining pressure and soapstone

are presented in Chapter 3 and 4, respectively. The test data

for the plain concrete under high confining pressure is adopted

C from Scavuzzo et al [68]. The test data for the steel fiber re-

inforced concrete is taken from Egging [30]. The test data for

the sandstone is taken from Nishida et al [56]. The test data

for this westerly granite and dunham dolomite are taken froi Mogi

[52].

- Vi-% ~..



219

6.4.2 Procedure for Determininq Material Constants

There are nine material constants associated with proposed

"0 model as described in Eq. (6.9). These constants can be classified

into three categories:

1) Elastic Constants
E, -v or G, K

2) Constants for Hardening Yielding

R, n, 01 y

3) Constants for Hardeninq
aI, 11

Elastic Constants

There are two elastic constants for an isotropic material, Young's

0modulus, E and poisson's ratio, v. It may be noted that bulk modulus,

K and shear modulus, G, may also be used. It will be assumed that

unloading and reloading is elastic. Thus E and v can be found

* from the slope of the unloading-reloading curves. Although any

test can be used for this purpose, only the hydrostatic compression

test and conventional triaxial compression tests will be used to

determine E, v. When the hydrostatic compression test data is

plotted as mean pressure vs. volume2tric strain, the slope of the

unloading-reloading curve gives the bulk modulus, K, where K is re-

lated to E and v through the following equation:

K E (6.38)
3-T-2,)

0 To obtain E and v explicitly, a second equation is needed. To de-

termine appropriate values for shear modulus, G, plots of octahecal
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shear stress vs. octahedral shear strain are used. The slope of

the unloading-reloading of the "Toct - "oct curve represents a value

*equal to twice the shear modulus. From these plots a weighted

average value of shear modulus, G, was determined. G is related to

E and v through the following equation:

G = 2 (l E + (6.39)

using Eq. (6.38) and (6.39), E and v can be obtained explicitly.

Response Function, n.
0

The value of n can be determined at the state of stress (in the ex-

periment) at which the dialation occurs, that is, volume change is

zero. At this state, from Eq. (6.8)

2D - (n-2 ) +y] F (6.40)
2 1 s

Also at dialation point

aF (6.41)
1

or

- ( 1 nJl(n-1) + 2YJ1) Fs 0

or 1

( an (6.42)

[AJ
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from Eqs. (6.40) and (6.42)

- 2D

1 - 2 = Jl2 (6.43)n F1sY

from which n is obtained.

For materials such as concrete and rocks we can use

the following procedure to determine n from a number of stress paths.

At ultimate failure Eq. (6.40) can be written as:

(J2D ) =-Y F (6.44)

Jl ultimate

* At dialation point using Eq. (6.43) we obtain:

2D = (1 - 2) Fy (6.45)

'l dialatiun

* Dividing Eqs. (6.44) and (6.45) and substituting for:

(J2D)
j12 dialation

0 (J2D)

J12 ultimate

or

2
(Oct )

1 2 dialation

2S
* oct

l jultimate

Oil
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thus

(----) Fsyn = 2S yF " --j) (6.46)

n value obtained from different stress paths (for different initial

confining pressure) will, in general, be different. Thus an average

value of n will be calculated.

The Effect of the Tensile Strength, R.

If the uniaxial tensile strength, ft. is not determined experiment-

ally, Hannant [36], Lade [48] and Mitchell [51] gives an approxi-

mate formula relating f to the unconfined compression strength,

cuf through the following formula:• cu'
f

ft = T.Pa (pc-) (compression positive) (6.47)
a

where T and t are dimensionless numbers, and Pa is atmospheric

pressure in the same units as those of ft and fcu, Values of T

and t have been determined [51, 82, 48] for several frictional

materials and listed in Table 6.1. Once ft is known, the value of

R can be computed. From studes conducted by Lade [23], R was

found to be 0.3% to 1.4% greater than ft' In other words:

1.003ft  R .1 .014 ft (6.48a)

or

1.003 f: ap 1.014 ft (6.48b)

with the estimated value of R, the resulting stresses in Eqs. (6.11)

are calculated and then substituted into the expression the streo
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TABLE 5.1
0 VALUES OF PARAMETERS T AND t FOR

VARIOUS TYPES OF FRICTIONAL MATERIALS

MATERIAL T. t REFERENCE

Cemented Soils -0.37 0.88 Mitchell i511

Concrete & Mortar -0.61 0.67 Wastiel- [321

Igneous Rocks -0.53 - Q 7n Lade [48]

Metamorphic Rocks -0.00082 1.6 Lade [43

Sedimentary Rocks -0.22 0.75 Lade [48]

Ceramics -1.0 0.73 Lade [48]

sum

p,

1'
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invariants given in Eqs. (6.9 and 6.10).

Determination of a and B

Consider the yield condition at ultimate failure which c - 0. fhen

Eq. (6.8) reduces to:

* 2D - (YJI 2 ) (l - aSr) ' 1 / 2 = 0 (6.49)

Now consider a TC (or CTC) and a TE (or RTE) test at Jl= 0+1 2 +13 =

C where the values of C defines specific octahedral planes.

If W 2D)TC and (J2D)T are the respective shear strengths (at

ultimate), we can wr-ite from Eq. (6.49)

2
( 2D) - T"J _1 1 =0

4 TC - l r r /2 0

or

WJ2D) (1 - aS )I/2 _ yJl 2

TC r TC
(1 - aS r ) /2

TC

Since (1 - Sr ) is not zero. Then

(J2D) (1 - aSr )I/2 = YJ1 2 (6.50)(JDTCr TC

Similarly

1( - aSr )I/2 yJ 12 (6.51)

TE TE

Since the right sides of Eqs. (6.50) and (6.51) are equal, for a

given octahedral plane, we can write:

(J 2 D) (1 - 3Sr ) I /2 = (2 (1 - S r)I/2 (6.52)
TC TC TE TE

S
.ct
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or

W 2D)C (l - BSr)1 / 2
(JDTc TE

TE TC

or

(J 2D) 2 (I as dSr
* TC ( TE (6.53)

(J2 )2 (1 - r)
TE TC

After rearranging Eq. (6.53) we can write:

)2 2
TC W2D)TE] 

(6.54)

[(Sr T2D C - (S r2D2) ]TC TE

* It is evident from Eq. (6.54) that $ can be determined for any pair

of tests (TC and TE) if the stresses at ultimate (failure) are

known. Also from Eq. (6.13)

= -o BI J l

taking natural log on both sides of Eq. (6.13), one obtains:

ln(-)=ln(-S 0 )- liJ (6.55)

Equation (6.55 represents a straight line when plotted in in (- C) -

J1 space as shown in Fig. 6.12. Then 30 and l are obtained from

the intersection and slope of the straight line, respectively. The

following steps are required to obtain 30 and 31 from the labora-

tory tests:

a) Consider N pair of tests at different values of J1.

'l"

I .'~~~~~~~~~~~~~~~~~ "J '' I I J " ; "''"" @ " ' ' ' .- " .. , % . - .. ••..
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0 Figure 6.12. Schematic Plot to Determine the viaterial
Constants S~ and ~
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Each pair is composed of one TC (or CTC) and one

TE (or RTE) test at some confining pressure.

b) For each pair of test, compute a at ultimate from

Eq. (6.54).

c) Since J is known for each pair of tests, compute -

Sin (- ) and - Jl and locate it on the (-In (- )

- (- Jl)) space as shown in Fig. 6.12. There will

be N number of such points.

d) Draw a best fit straight line (in a least square

sense) through these points (see Fig. 6.12) and

extrapolate backward to intersect with the ordinate,

L - i ).

e) The constant is simply the slope of this line.

is computed from the intercept with the ordinate

which is equal to - in (- 6).

Determination of y

The following procedure may be used to compute y from conventional

laboratory test data:

a) The equation of the yield surface at ultimate can be

written as

J2D = YJ12 (1 - 3Sr)-/ 2

YJ 2 = /2 (6.56)
1 J2D (1

or may be written as

m yJ (6.57)

- V
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where

m [ J 2D (1 - 3S 1l/2]

Since known, m can be determined for any test if the

stresses at ultimate are known.

b) Consider a number of tests at various confining pressure

(J,). Compute m and J,2for each test using the known

stresses at ultimate.

c) Since m and J 1 2 for each tests are known (at ultimate),

locate this point on the m - J12space as shown in Fig.

6.13. If N number of tests are included, there will be

N such points.

d) Draw a best fit straight line through the experimental

points such that it also passes through the origin (See

Fig. 6.13).

e) y is obtained from the slope of this line.

Determination of a 1 and i

The growth function, Eq. (6.19), after taking natural log

both sides can be written as:

Til n (C) + In (ai) =ln (a1) (6.53)

Equation (6.53) can now be used to determine n1and a 1. The

following steps are involved in the calculation of rl and a,.

a) Consider the stress-strain curve from one test

(a TC test) as shown in Fig. 6.14. A number of points,

say N, are selected on the loading portion of the
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stress-strain curve and the stresses, oi (i = 1,2,3)

and the corresponding strains, E i (i = 1,2,3) at each
O1

point are noted.

b) Using the slopes of the unloading-reloading curves,

_ (i = 1,2,3) are obtained at each point where the01

superscript p denotes plastic. From P (i = 1,2,3),
the incremental plastic strain AJ (i = 1,2,3) be-

tween any two adjacent points is obtained.

c) At every point, A is then calculated using the incremental

plastic strain, Ae.P (i = 1,2,3), where
I

: {(AE P)2 + (AE2P)2 + ( AC3P)2}11/2  (6.59)

d) Total at j th point is then calculated according to

the following equations:

* = + Wi (6.60)
0 i=l

where j refers to the point at which the quantities

are calculated. A i in Eq. (6.55) denotes the ith

increments of . 0 is the value of corresponding

to initial confining pressure, uo, at which shear-

ing started.

e) The stress invariants Jl' J2 ' J3D are computed at each

of N points from the known stresses, 7i (i = 1,2,3).

* f) The magnitude of a, is then calculated from the yield
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condition at each point using the equation:o 1/2

[(Ii 1 2 2 OZD (I 
r) ]

* = (6.61)
JIn

g) For each point, compute - In ( ) and In (cc) and locate

• this point on the - In ( ) vs. In (ct) space. If

total number of tests is M, then a total of number of

points will be obtained. A typical plot N x M is shown

• in Fig. 6.15.

h) For each available test, plots of - In ( ) vs. in (c)

yield the value of ct I from the intercept along the or-

* dinate and n, from the slope of the straight line

(see Fig. 6.15). The values of n, and a1 are averaged

from available tests.

* The general procedure outlined above may be used for hand

calculation. The process, however, can be tedious and time

6.5 Material Constants for Plain Concrete

Under Low Confining Pressure

Description of this plain concrete is given in section 2.2.1.

The test results are presented in Chapter 3. Eleven tests, in-

cluding the hydrostatic compression (HC) test, are used to obtain

the material constants associated with the proposed model. Tests
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(from Table 3.2 are used to find material constants as shown

in Fig. 6.16. Figure 6.16 shows the plot which provides the

values of nI and a1 . It may be noted that the plots are ob-

tained from the computer. Thus, no hand calculations are used

to obtain the constant for hardening. 6o and 3, are determined

from Fig. 6.17.

The constants for plain concrete was obtained by here-

going procedures. TABLE 6.2 shows values of the material

constants from various stress path tests as previously discussed.

6.6 Material Constants for Colorado Plain

* Concrete Under High Confining Pressure

The plain concrete tested by Scavuzzo et al [681 has pro-

perties of cement: sand: gravel = 1:3.16:3.19, and cement: water =

1.2. Also fc = 3650 psi (25.17 MPa), uniaxial compressive strength.

with 3x6 in. (7.62x15.24 cm) cylinders at 28 days.

For multiaxial testing 4x4x4 inch (l0.16xlO.16xlO.16 Cm)

cubical specimens were used. The testing program consisted of

TC, TE and SS, Fig. 2.10, tests with initial hydrostatic pressures

of G = J 1 = 4, 6 and 8 Ksi (27.58, 41.37 and 55.16 MPa). All

specimens were first loaded in HC up to a and then subjected to

deviatoric cyclic loading along Tr, TE or SS path with increasing

octahedral shear stress to failure. Tests with circular stress

path involving hydrostatic, monotonic loading to 4 and 8 ksi,

followed by deviatoric stress along the triaxial compression path
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Figure 6.17. Plot of -2Zn(-:') vs. J, to Determine Material
Constants ;oand sfor Plain Concrete.
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TABLE 5.2
MATERIAL CONSTANTS FOR PLAIN CONCRETE

FROM DIFFERENT STRESS PATH TESTS

MATERIAL CONSTANT FOR PLAIN CONCRETE

ENGLISH UNITS SI UNITS

K 487.8C ksi 3363.8 MPa

ELASTIC
CONSTANTS G 440.36 ksi 3036.3 MPa

E 1012.82 ksi 6983.4 MPa

*

v 0.154 0.154

6=3R 1.1833 ksi 8.1589 MPa

Y .1130 .1130

CONSTANTS
FOR E -0.8437 -0.8437

ULTIMATE o
o YIELDING

1 0.0270 0.0270

7.0.n7.0 7.r ,-

CONSTANTS 0.4388 0.4388

FOR
'HARDENING a.1 0,9321xi 0-2 0.9321xi0-2

0i

0I
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in the specified circle, Fig. 2.11, were also performed.

Seven tests with different stress paths are used to obtain the

elastic constants, ultimate and hardening parameters for plain

concrete. Tests are used to find material constants as shown in

Fig. 6.18. Figure 6.18 shows the computer plot which is used to

obtain nI and a,. a and a are determined from Fig. 6.190

TABLE 6.3 shows values of the material constants for Coloardo

plain concrete.

6.7 Material Constants for SFRC-UC

The properties of SFRC-UC tested by Egging [30] are as follows:

*Mix

The concrete mix generally used in SFRC was a high

strength design which was mixed with various sizes of

randomly distributed steel fibers.

Uniaxial Compression Strength

fc = 9200 psi (63.43 MPa)

Uniaxial Tensile Strength

T =-935 psi (6.57 MPa)

with 3x6 (7.62x15.24 cm) cylinders at 28 days.

For multiaxial testing 4x4x4 inch (l0.16xlO.16xlOxl6 cm)

cubical specimens were used. The testing program consisted of

TC, TE and SS tests with initial hydrostatic pressures of 4,6 and

8 ksi (27.58, 41.37 and 55.16 MPa). All specimens were loaded

in the same manner as the Colorado plain concrete.

60
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TABLE 6.3MATERIAL CONSTANTS FOR COLORADO PLAIN CONCRETE

FROM DIFFERENT STRESS PATH TESTS

MATERIAL CONSTANT FOR COLORADO PLAIN CONCRETE

0 
ENGLISH UNITS SI UNITS

K 1762 ksi 12148.3 MPa

ELASTIC G 1608.7 ksi 11092. MPa
CONSTANTS

E 3700 ksi 25511.5 MPa

% 0.15 0.15

6=3R 1.0776 ksi 7.4 MPa

y 0.07882 0.07882CONSTANTS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FOR
ULTIMATE E0  -0.60319 -0.60319
YIELDING

B1  0.031a 0.0314

n 7.0 7.0

CONSTANTS -11 0.153907 0. ! 3907
FOR

HARDEN I NG a- 0.362813xI 0. 362862x C-1 01101
O.62-3x
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Nine various stress path tests were used to find material

constants. Tests are used to find material constants as shown

* in Fig. 6.20. Figure 6.20 shows the computer plot which is used

to obtain 71 and a,. 0 and 81 are determined from Fig. 6.21

TABLE 6.4 shows values of the material constants for SFRC-

0 UC.

6.8 Material Constants for Soapstone

Description of the soapstone is given in Section 2.2.2. The

test results are presented in Chapter 4.

Eleven tests, including the hydrostatic compression test,

are used to obtain the material constants. Tests (from TABLE 4.1)

are used to find material constants as shown in Fig. 0. 22.

Fig. 6.22 shows the plot which provides the values of 1I and

4 . 30 and I are determined from Fig. 6.23.

TABLE 6.5 shows values _f the material' constants for soap-

stone.

6.8 aterial Constants for Sandscone

Description of sandstone and failure criterion in octahedral

planes with results of tests is given by Nishida et al [56]

fc = 9.393 ksi (64.72 MPa), uniaxial compression strength, is

given by Kulhawy [42]. For generalized triaxial testingL 1.57xl.57xl.57 inch (4x4x4 cm) cubical specimens were used.

Fifteen tests with different stress paths, seven 'C tests with
confining pressure = 14.22, 20.06, 28.02, 34.71, 41.82, 48.7

Li
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( 2 ) TC + (J2 D) T
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* J~ (ksi)

Figure 6.21. Plot of -Zn(-B) vs. ji to-Determine Material
Constants 20 and 5' for SFRC-uc.
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TABLE 5.4
MATERIAL CONSTANTS FOR SFRC-UC
FROM DIFFERENT STRESS PATH TESTS

MATERIAL CONSTANT FOR SFRC-UC

_________ENGLISH UNITS SI UNITS

K 936 ksi 6453.7 MPa

ELASTIC G 1177 ksi 8115.4 MPa
CONSTANTS

E 2487 ksi 17147.9 MPa

v0.0568 0.0568

CONSTANTS

ULTIMATE
YIELDING

so -0.70778 -0.70778

bi0.01639 0.01639

__ __ __ _ __ __ 7.0
CONSTANTS rl0.448750 0.448750

FOR I ________

HARDENING a.I 0.45193/x10 2 I0.451 937xl 0-2
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TABLE 6.5
MATERIAL CONSTANTS FOR SOAPSTONE
FROM DIFFERENT STRESS PATH TESTS

MATERIAL CONSTANT FOR SOAPSTONE

_______ -ENGLISH UNITS SI UNITfS

K 449.51 ksi 3099.37 MPa

*G 614.99 ksi 4240.4 MPa

E 1327.39 ksi 9152.4 MPa

* v0.0792 0.0792

6=3R 0.46 ksi 3.2 MPa

'Y 0.0468 0.0468

E-0.74922 -0.74922

al0.0465 0.0465

n 7.0 7.0

0.747 0.747

al 0.177x10 2 0.177xlO 2
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and 56.0 ksi (98.05, 138.31, 193.20, 239.33, 288.35, 336.06 and

386.12 MPa) and eight TE tests with confining pressure oo =

* 21.72, 28.2, 34.66, 42.15, 48.46, 54.96, 64.73 and 70.56 Ksi

(149.76, 194.44, 238.98, 290.62, 334.13, 378.95, 446.31 and

486.51 MPa), are used to find ultimate parameters. Also three

tests, two TC tests with confining pressure a0 = 28.45 ksi

(196.16 MPa), are used to find hardening parameters. Fig. 6.24

shows the plot which provides the values of n, and a1 .

0 a and al are determined from Fig. 6.25.

TABLE 6.6 shows values of the material constants for sand-

stone.

6.10 Material Constants for Westerly Granite

Description of westerly granite (Igneous Rock) is given by

* [52]. All specimens were taken from a single block of rock.

Compression specimens were circulars with 0.63 inch (1.6 cm) in

diameter and 1.97 inch (5.0 cm) long. Extension specimens

• were from 0.92 to 1.0 inch (2.30 to 2.54 cm) in diameter and

1.97 inch (5.0 cm) long. fc = 42.698 ksi (294.19 MPa).

Twelve tests with different stress paths, six CTC tests

with confining pressures a = 0., 1.86, 2.47, 3.77, 6.09 and

8.41 ksi (a = 0, 12.82, 17.02, 25.98, 41.96, 57.94 MPa) and

six RTE with confining pressures % = 44.67, 50.47, 61.78,

* 73.10, 79.99, 85.71 ksi (a = 307.8, 347.7, 425.7, 503.7,
0

551.1, 590.5 Mpa), are used to find ultimate parameters for

Id'1
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TABLE 6.6
MATERIAL CONSTANTS FOR SANDSTONE
FROM DIFFERENT STRESS PATH TESTS

MATERIAL CONSTANT FOR SANDSTONE

SENGLISH UNITS SI UNITS

K 1581.23 ksi 10902.6 MPa

*ELASTIC G 1666.7 ksi 11491.9 MPa
CONSTANTS ______

E 3700.1 ksi 25512.2 MPa

v 0.11,0.11

6:=3R 1.251 ksi 8.626 MPa

CONSTANTS y0.0774 0.0774
FOR

ULTIMATE co -0.76721 -0.76721
YIELDING

El0.0019 0.0019

n 7.2 7.2

CONSTANTS T~1 0.345303 0.0345303
FOR

HARDENING a .63l-2 .63l 2
a1 046x0O46x
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westerly grainie. Stress-strain responses for these tests were

not available to determine the elastic constants and hardening
*

parameters.

Constants for Ultimate Yielding

The value of the material constants for westerly granite

are given below:

6= 3R = 5.706 ksi (39.343 MPa)

y : 0.14460

o 0.81058

l  0.0025

* nl= 7.2

Fig. 6.26 shows the plot which provides the values of 0 andl

6.11 Material Constants for Dunham Dolomite

Description of Dunham Dolomite (sedimentary rock) is given

by [52]. All specimens were taken from a single block of rock.

Compression specimens were circulars with 0.63 inch (1.6 cm) in dia-

meter and 1.97 inch (5.0 cm) long. Extension specimens were

taken from 0.92 to 1.0 inch (2.30 to 2.54 cm) in diameter and

1.97 inch (5. cm) long. fc = 31.472 ksi (217.0 MPa).

Sixteen tests with different stress paths, six CTC tests

wi confining pressures ao = 12.06, 17.84, 18.66, 22.46, 24.71

and 28.19 ksi (83.15, 123.01, 128.66, 154.86, 170.38 and 194.37

MPa and ten RTE with confining pressures 7,0 = 21.29, 25.98,

0' _ " " ' w "'W , ' ''' '' ', '-w ', , " ' ' .., ' ,. "' . ' , " "' '
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29.88, 31.39, 36.99, 39.56, 42.55, 43.51, 49.21 and 54.187 ksi

(146.79, 179.13, 206.02, 216.43, 255.05, 272.77, 293.38, 300.0,

339.30 and 373.62 Mpa), are used to find ultimate parameters for

Dunham Dolomite. Stress-strain responses for these tests were

not available to determine the elastic and hardening constants.

0 Constant for Ultimate Yielding

The value of the material constants for Dunham Dolomite are

given below:

6= 3R = 3.096 ksi (21.35 MPa)

y = 0.1303

=0.83166

Sf 0.00405

aandan l are determined from Fig. 6.27.
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CHAPTER 7

VERIFICATION OF PROPOSED MODEL

7.1 Introduction

In this chapter, the verification of the model with respect

* to the ubical triaxial test data for a number of different con-

cretes and rocks is presented. The parameters obtaaned in

Chapter 6 will be used to back predict the strengths and the

* stress-strain responses obtained from laboratory tests for plain

concrete, Colorado plain concrete, SFRC-UC, soapstone, sandstone,

Westerly Granite and Dunham Dolomite.

• The incremental constitutive equation is used on the basis

of the normality rule of plasticity and the consistency condition

dF = 0 as:

* {da' = [Cep] {dE} (7.1)

where {du}, {de} = vectors of incremental stress and strain

components, respectively, and [Cep] = constitutive matrix con-

taining the foregoing material constants. In order to predict

the behavior under a given stress path, Eq. (7.1) is integrated

along that path starting from the initial hydrostatic state.

A computer procedure is developed using Fortran IV language

to perform the numerical integration in Eq. (7.1). Some of t',e

important features of this integration routine are discussed

in detail by Faruque [32J.

257
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7.2 Verification with Resyect to Plain Concrete

The material constants for this plain concrete under low con-

* fining pressure are given in TABLE 6.2. The description of the

plain concrete is given in Chapter 2. The computer procedures

are used to back-predict some of the ultimate envelopes, strengths

and stress-strain responses curves obtained from the cubical

triaxial tests.

7.2.1 v 2D -l Plane

From Eq. (6.3), the predicted ultimate (failure) envelope

in J2D - Jl plane was calculated and compared with the experi-

* mentally determined strength values. These comparisons are

shown in Fig. 7.1, 7.2 and 7.3 for the Triaxial Compression

(TC), Simple Shear (SS) and Triaxial Extension (TE) tests, res-

* pectively. Good correlation is shown betwqeen predicted and ex-

perimental results.

7.2.2 Octahedral. Triaxial, Biaxial, and 7 Planes

From Eq. (6.8), the predicted ultimate envelope was cal-

culated and compared with the experimentally determined strength

values. The predicted envelopes are shown in Figs, 7.1 and 7.5 "or

the octahedral and triaxial planes, respectively. The proposed

model is seen to represent the data very well.

The predicted ultimate envelope has the required shape,

i.e. curved in the triaxial planes and a triangular section
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with rounded corners in the octahedral plane. It is seen in

Fig. 7.4 and 7.7, as the confining pressure (Jl) is increased,

the shape of the yield envelope gradually changes from triangle

with smooth rounded corners to a circle (at very high confining

pressure).

Fig. 7.6 shows the biaxial ultimate envelope predicted

using proposed constitutive model. It is for reference only

sinceno experimental biaxial strength data was obtained.

Predicted ultimate envelope on the '-plane is shown in Fig. 7.7.

7.2.3 Strength Behavior

Based on the predicted strength envelope, Fig. 7.5, pre-

dicted values of the uniaxial compressive strength, fcu' equi-

biaxial compressive strength, fcb' and uniaxial tensile strength,

ft. can be calculated. These predicted strengths are:

fcu = 5077 psi (35 MPa) (7.2)

fcb = 16862 psi (116.3 MPa)

ft =-389 psi (-2.68 MPa) (Compression Positive)

The values of fcu and ft compared to unconfined compression

strength, fcu' and tensile strength, ft, based on tests with

cubical specimens of 4x4x4 inch (l0.16xlO.16xlO.16 cm) in

multiaxial test device and Eq. (6.47), respectively. These

values were:
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f 4503 psi (31.05 MPa) (7,3)

It 389 psi (-2.68 M~a) (Compression Positive)

The differences between these predicted and observed stren'gths

may be attributed to the effect of specimen types and boundary

conditions.

Based on the predicted ultimate envelope, Fig. 7.5, pre-

'dicted values of the /WJ 2 for TC on 7a-plane (C- = -300) SS (0

00) and TE ((D = 300) can be calculated. These predicted values

are:

rJ-- =0.634 ksi (4.37 MPa)2DTC

~vTJ-D~ = 0.404 ksi (2.786 MPa) (7.4)
* 2 SS

(,r--D TE= 0.347 ksi (2.393 MPa)

Eqs. (7.4) can be expressed as the ratio of di'ferent stress

paths on the Tr-plane:

( /J-- )
R = 2 TC 1 8 3

21D TE

R 2= 0 S .6 (7.5)
201) TE

R 3 2D___ T 1 57

0
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Note that v'j2 D )  is almost twice of (v-d-29) (Eqs. 7.4)
TC TE

plotted in a-plane. This may be partly due to the fact that

ultimate strength for plain concrete under extension stress path

is much lower than that under comparison stress path.

7.2.4 Stress-Strain Behavior for Test Used for rinding Material

Constants

Figure 7.8 shows the comparison of the prediction and ob-

servation for a typical HC test; the agreement between the pre-

diction and observation is satisfactory. Figures 7.9, 7.10,

7.11 and 7.12 show the comparison of the predictions and ob-

servations for the stress-strain responses for one (CTC) test,

one (TC) test, one (SS) test, and one (TE . Initial confining

pressure for the (CTC), (TC), (SS) and (TE) tests are I ksi

(6.895 MPa), 3 ksi (20.69 MPa), 4.5 ksi (31.03 MPa) and 4 ksi

(27.58 MPa), respectively. It is evident from Figs. 7.9, 7.10,

7.11 and 7.12 that the predictions from the model compare fairly

well with experimental results.

7.2.5 Volumetric Responses Behavior

The volumetric strain, cV, is plotted with respect to axial

strain, E Figs. 7.13, 7.14, 7.15 and 7.16 show p, - l lots

for one CTC (1 - ksi) test, one TC (]o = 3 ksi) test, one
00

SS (o= 4.5 ksi) and one TE (o = 4 ksi) test. Experimental

results are also shown on the same plots, It is evident from

, ,... - ' .I".
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these plots that the predictions compare fairly well with the

experimental data.

*

7.2.6 Circular Stress Path and Proportional Loadinq Tests Not

Used for Findinq Material Constants

Figures 7.17 and 7.18 show the comparison of the predictions

and the observations for a circular stress path test and a pro-

portional loading (R = 1/3) test which are not used to determine

the material constants. It is seen from Figs. 7.17 and 7.18

that a good agreement is achieved between the predictions and

the observations.

40 7.3 Verificatio.i with Respect to Colorado Plain Concrete

The material constants for this plain concrete under high

confining pressure are given in TABLE 6.3. The description of

the plain concrete is presented in Chapter 6. A number of ul-

timate envelopes, strengths and stress-strain response curves

are predicted and compared with the experimental results.

7.3.1 /T2D - Jl Plane

Figures 7.19, 7.20 and 7.21 show the comparison of the pre-

dictions and observations of ultimate envelopes in v32 D -

plane, for (TC) test, (SS) test and (TE) test, respectively.

The proposed model is seen to represent the d]ata very well.
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7.3.2 Octahedral, Triaxial, Biaxial and 7-Planes

From Eq. (6.8), the predicted ultimate envelope was cal-

with the experimental data.

* Fig. 7.24 shows the biaxial ultimate envelope predicted

using proposed constitutive model. It is for reference only

since no experimental biaxial strength data was obtained.

* Predicted ultimate envelope on the i-plane is shown

in Fig. 7.25.

7.3.3 Str~nqt.h Behavior

Based on the predicted strength envelope, Fig. 7.23, pre-

dicted values of the uniaxial compressive stren-th, fcu, equi-

40 biaxial compressive strength, fcb' and uniaxial tensile strengthi,

f.can be calculated. Thes3, pre~ictfr& strenoth- ar! :

fcu 3800 psi (25.2 -1pa) f(7.6)

fcb =3490 psi (58.51 MPa)

ft -354 psi (-2.44 'Ipa) (Compression rnositive)

The values of fcu and ft co'lpar9d to unconfincd, ccnmpressirfl

* strength, fC, and tensile strengthl, ft' based on tests with

cylindrical speci-mens of 3x6l in. (7.b_)x15.?d cm) ane Cq. ~ '

pr
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respectively. These values were:

fc 3954 psi (27.26 MPa) (7.7)
C

ft : " 354 psi (-2.44 MPa) Compression Positive)

It is evident from Eqs. (7.6) and (7.7) that the predictions

compare well with the experimental strengths.

Based on the predicted ultimate envelope, Fig, 7.25, pre-

dicted values of the 1W2D on the T-plane for TC ((D =- 300) SS2D

(0 = 00) and TE (0 = 300) can be calculated. These values are:

(U2DT :0.45 ksi (3.1 Mpa)

(V2D)ss = 0.30 ksi (2.07 Mpa) (7.8)

(/JTD = 0.25 ksi (1.72 Mpa)
TE

Ratios of Eqs. (7.8) can be expressed as:

VTC

R- -= -1.80

R2 -(V 02D)

TE

R TC 1 50

2DSS

One can see that (V7J2) is almost twice ( 2) (Eqs. 7.8)
TC TE

when plotted in r-plane as it is expected for pressure sensitive

materials.

r "N
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7.3.4 Stress-Strain Behavior for Test Used for Finding ,Material

Constants

* Figure 7.26 shows the comparison between the predicted and

observed stress-strain responses for a hydrostatic compression

(HC) test. It is seen that the comparison is good.

* Figures 7.27, 7.28 and 7.29 show the comparison of the pre-

for Tiaxial Compression (TC), Simple Shear (SS) and Triaxial

Extension (TE) tests, respectively. For the (TC), (SS) and

(TE), the initial confining pressure is a !<si (41.37 "Pa). it

is evident from Figs. 7.27, 7.28 and 7.29 that the predictions

from the proposed model compare well with the experimental re-

* sults.

7.3.5 Volumetric Responses Behavior

* Figures 7.30, 7.31 and 7.32 show plots of EV = cI for

one TC (c = 6 ksi) test, one SS (a = 6 ksi) test and one

TE (d = 6 ksi) test. It is evident from these plots that

* the correlation between the proposed model predictions and

observations is satisfactory.

7.3.6 Circular Stress Pat1 Test "'ct "''d for irq "3,> eriJ

Constants

Figure 7.33 shows the comparison of the predictions and

the observations for a circular stress path tcst ,,ic- is not
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used to determine the material constants. It is seen from

Fig. 7.33 that a good agreement is achieved between the pre-

dictions and the observations.

The material constants for SFRC-UC (steel fiber reinforced

concrete--University of Colorado) are given in TABLE 6.4. The

description of the SFRC-UC is presented in Chapter 6. Ultim te

envelopes, strengths and a number of stress-strain response

curves are predicted and compared with the experimental results.

7.4.1 /72D - Plane

Figures 7.34, 7.35 and 7.36 show the comparison of the pre-

dictions and observations of ultimate envelopes, in J-2D -

plane, for (TC), (SS) and (TE) tests, respectively. It is

evident from these figures that the model predictions are in

close agreement with observations.

7.4.2 Octahedral.,Triaxial, Biaxial and T-Planes

Figures 7.37 and 7.38 show the comparison of the predictions

and observations of ultimate envelopes for octahedral and tri-

axial planes, respectively. It is evident from these plots

that predictions compare well with the experimental data.

Figure 7.39 shows the biaxial ultimate envelope predicted

using proposed model. It is for reference only since no ex-

perimental biaxial strength data was obtained.
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Predicted ultimate envelope on the 7-plane is shown in Fig, 7.37.

7.4.3 Strength Behavior

Based on the predicted strength envelope, Fig. 7.38, pre-

dicted values of the uniaxial compressive strength, fcu' equi-

biaxial compressive strength, fcb' and uniaxial tensile

strength, ft. can be calculated. These predicted strengths

are:

f cu 7330 psi (50.56 Mpa) 7.10)

f = 24395.2 psi (168.20cu (Compression Positive)
f= - 656 psi (-4.52 MPa)

The values of fcu and ft compared to unconfined compression

strength, f' and tensile strength, ftl based on tests with
c

cylindrical specimens of 3x6 in. (7.62x15.24 cm) and Eq. (6.47),

respectively. These values are:

f, = 9200 psi (63.43 MPa) (7.11)c

ft = -456 psi (-4.52 t'Pa) (Compression Positive)

The differences between these predicted and observed strengths

may be attributed to the effect of specimen type and boundary

conditions.

Based on the predicted ultimate envelope, Fig, 7.3Q, pre-

dicted values of the Yv'D on the 7-plane for TC (1 - 300) SS

(0 = 00) and TE (0 = 300) can be calculated. These values are:

• I



-•3 0 7

= 0.96 ksi (6.62 MPa)(Vj2 ) TC(7.12)

(vJ,2D)ss = 0.69 ksi (4.76 MPa)

(VJ12D) = 0.58 ksi (4.0 MPa)TE

Ratios of Eqs. (7.12), on the --lane, can be expressed as

TC

R1  TC -1.66

( )2D)TE

R2  SS 1.19 (713
('7jD)TE

R TC -1.39

(r2)SS

• From Eqs. (7.12) and (7.13), one can see thiat (/J2D is almost
TC

twice (v2D) (Eqs. 7.12) when plotted in 7-Dlane as it is ex-
LU TE

pected for SFRC-UC.

7.4.4 Stress-Strain Behavior for Test Used for Finding Material

Constants

Figure 7.40 shows the comparison between the predicted and

observed stress-strain responses for a hydrostatic compression

(HC) test. It is seen from Fig. 7.40 that the prediction from

the proposed model compare fairly well with the experimental result.
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Figures 7.41 through 7.45 show the comparison of predic-

tions and observations for the stress-strain responses for two

*(TC) tests, two (SS) tests, and two (TE) tests. For the (TC),

(SS) and (TE) tests, the initial confining pressures are 4 and

6 ksi (27.58 and 41.37 . t is :,/i dent ram r s. 7.!.

* through 7,45 that the predictions from the model compare well

with the experimental results.

7.4.5 Volumetric Responses Behavior

Figures 7.47 through 7.52 show plots of -V -I for two

TC (a = 4 and 6 ksi) tests, two SS (7 = 4 and 6 ksi) tests

and two TE (a = 4 and 6 ksi) tests. It is evident from Figs.

7.47 through 7.52 that the proposed model predictions are in

close agreement with the observations.

The material constants for soapstone are given in TABLE

6.5. The description of the soapstone is presented in Chapter

2. Ultimate envelopes, strengths and a number of stress-strain

response curves are predicted and compared with the experimental

results. These results are presented 1elow.
p.

7.5.1 vJ2D - Jl Plane

Figures 7.53, 7.54 and 7.55 show the comparison of the pre-

dictions and observations of ultimate envelopes, in J2 21

plane, for (TC), (SS) and (TE) tests, respectively. It is
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evident from Figs. 7.53 through 7.55 that the model predictions

compare well with the experimental data.

7.5.2 Octahedral, Triaxial, Biaxial and 7,-Planes

Figures 7.56 and 7.57 show the comparison of the predictions

and observations of ultimate envelopes for octahedral and tri-

axial planes, respectively. It is evident from these Figs.

that the model predictions compare well with the experimental

results.

Figure 7.58 shows the biaxial ultimate envelope predicted

using proposed model. It is for reference only since no ex-

perimental biaxial strength data was obtained.

Predicted ultimate envelope on Tr-plane is shc.:n in Fig.

7.59.

7.5.3 Strenqth Behavior

Cased on the predicted strength envelope, Fig. 7.57, pre-

dicted values of the uniaxial compressive strength, f c, eui-

biaxial compressive strength, fcb' and uniaxial tensile, ft.

can be calculated. These predicted strengths are:

fcu = 940 psi (6.51 MPa)

fcb = 1270 psi (8.78 MPa) (7.14) 4

ft = 160 psi (-1.08 MiPa) (Compression Positive)

The values of fcu and ft compared to unconfined compressi-n

strength, f', and tensile strength, f based on tests with



* 326

Ga -C CL
ru

ra LX , 0

rz C-

+J Ca- L

U)

v) E)

S.- C.

* -cr S

0 r0

Q~ ca

(2

CD LD C LrU')



* 327

CD

4 0.

x U

U, CD
0.u &J. N 1

C S_

o m

L, LO)
ci
S.

E
o

CD- '; 0

CD '..' CDU)C&-

Lamm



328,

C.D

0p m
C)j

0. -

c\Ji

CDC

co T N CD



329

c 0-

C- 2"

0~~ C-()

VU 0-

U

*K %

D% CD--KL

CDC,

x --

E Ui

Ed,

C*

XS U)NC

Uansj up&,, ~

2 r



330

cubical specimen of 4x4x4 in. (l0.16xlO.16xlO.16 cm) in mul-

tiaxial test device and Eq. (6.47), respectively. These

values are:

fcu 1200 psi (8.27 MPa) (7.15)

ft =-160 psi (-l .08Pa ) (Compression Positive)

It is evident from Eqs. (7.14) and (7.15) that the corre-

lation between the proposed model predictions and observations

is reasonable.

Based on the predicted ultimate envelope, Fig. 7,56,

predicted values of the v2D on the Tr-plane for TC (0=- 300),

SS (0= o) and TE (0= 300) can be calculated. These values are:

(/J 2 ) = 0.73 ksi (5.03 MPa)2DTC

VT2D) = 0.54 ksi (3.72 MPa) (7.16)
2 SS

(YJ2D ) = 0.42 ksi (2.90 MPa)2DTE

Ratios of Eqs. (7.16), on the nT-plane, can be expressed as

R1r.2D)T 74 (as R1  2.0, the shape

2~D TE of ultimate envelope in

(v'2JD) --plane becomes a triangle)
SS -(.7

R2 - 1.29 7.17)

2DTE
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R3 TC = 1.35
*- 

SS

From Eqs. (7.16) and (7.17), one can see that the predicted

ultimate envelope has the required shape, a triangular section

with rounded corner in the Tr-plane.

7.5.4 Stress-Strain Behavior for Test Used for Finding Mater-

ial Constants

Figure 7.on shows the comparison between the predicted

and observed stress-strain response curves for a hydrostatic

compression (HC) test. It is seen from Fig. 7.60 that the

prediction from the model compare fairly well with the experi-

mental results.

Figures 7.61 through 7.(5 show the comparison of pre-

dictions and observations for the stress-strain responses for

two (CTC) tests, one (TC) test, one (SS) test and one (TE)

test. Initial confining pressures for (CTC) tests are 1 and

3 ksi (6.895 and 20.69 MPa). For the (TC) test, the initial

confining pressure is 2 ksi (13.79 MPa). For the (TE) and

(SS) tests, the initial confining pressure is 3 ksi (20.69

MPa). It is evident from Figs, 7.61 through 7.65 that the

predictions from the proposed model compare very well with

experimental results.
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7.5.5 Volumetric ResDonses Behavior

Figures 7.66 through 7.69 show plots of EV - F I for two

* CTC (a = 1 and 3 ksi) tests, one TC (ao = 2 ksi) test, one00

SS (Go 3 ksi) test and TE ((a = 3 ksi) test. It is evi-

dent from Figs. 7.56 through 7.69 that the models compare

*0 very well with the experimental results.

7.5.6 Circular Stress Path Test Not Used for Findina Material

Constants

Figure 7.70 shows the comparison of the predictions and

the observations for a circular stress path which was not

used to determine the material constants. It is seen from

Fig. 7.70 that a good agreement is achieved between the pre-

dictions and observations.

0

The material constants for sandstone are given in TABLE

6.5. The description of the sandstone is presented in Chap-

ter 6. Ultimate envelopes, strengths and a number of stress-

strain response curves are predicted and compared with the

experimental results, as presented below.

7.6.1 J29 - J Plane

Figures 7.71, 7.72 and 7.73 show the comparison of the

predictions and observations of ultimate envelopes, in , -

Jl plane, for (TC), (SS) and (TE) tests, respectively. It

0



* 339

S-- c c

C.) 001

-0- E

0 0

13 C-

0-0

CDC

(1 L 0 tj 

"3~~~~c 'UP4S ..~anO



* 340

0(
r-C

CLC

.S - C)

S.- D

c. 0

CC

-v-

S..-

CCD

/ CD

* C

(S)~5. N T(Dc

(S) CDOS

3 .LJ; C.)'swL-



341

I-

oS CJ-

C))

LA

'4-C-

EE

0 0

C.-

to x

ICYi

": -L.4 0l~wnO

Li LM 0



342

xx

0)S

4-*

* --
QC *-.-

ID ( 1u,

0 0d

o C))

CDOL

CD0 CD
A3- ',0.; :C)aw L I



A3 343)A

u Z

Ew to E

(A9

17- tn c

C-4 C-/0
N -4

C oo(

co r..
it w

~ Cc

0 0i ...

C -.

Ln cc
V ) InW

LLJ co
o Ii ocl

0 Il - -
* a C t~ fn

0 I- - ~ laI



344

CDC
-C I

CY

CJ

C-11

-cr

C-

oo L:-

IC

C)C
x~

CDC

0 n 0 -

CD. In IN

il

milam96"itl k . al I-



* 345

.-i Co

>0

C

cu 4-

N

CC)

C- cx

CC

00(0 ~

(s) Y,



0 346

CD-

CD)

* ,-

C! CD

(N

IM LJ

*E
ci

c -0

E L. cc
'- '4- 0"

I- -

C1 CD C..DC

00(0 (N
G Zr) A



* 347

is evident from these Figures that the proposed model predictions

compare well with the experimental data.

7.6.2 Octahedral and Triaxial Planes

Figures 7.74 and 7.75 show the comparison of the predic-

tions and observations of ultimate envelopes for octahedral

and triaxial planes, respectively.

Predicted ultimate envelope on iT-plane also is shown in

* Fig. 7.75.

7.6.3 Strenqth Behavior

Based on the predicted envelope, Fig. 7.75, predicted

values of the uniaxial compressive strength, fcu' equi-biaxial

compressive strength, fcb' and uniaxial tensile, ft, can be

calculated. These predicted strengths are:
*

fcu = 10.48 ksi (72.23 MP3)

fcb = 13.58 ksi (93.61 MPa) (7.13)

ft = 0.411 ksi (-2.83 MPa) (Compression Positive)

the values of f and ft compared to unconfined compressionCU

strength, f, and tensile strength, ft. based on tests with

cylindrical specimens of 3x6 in. (7.62x15.24 cm) and Eq. (6.47),

respectively. These values are:

f = 9.804 ksi (67.60 MPa) (7.19)

ft = 0.411 ksi (-2.83 MPa) (Compression Positive)

It is evident from Eqs. (12.18 and (12.19) that the predictions
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compare very well with the experimental results.

Based on the predicted ultimate envelope, Fig. 7.74

predicted values of the J2D on the ir-plane for TC (0=- 300),

SS (0= 00) and TE (0= 300) can be calculated. These values

are:

C'j-2)TC : 0.865 ksi (5.96 MPa)DTC

= 0.603 ksi (4.16 MPa) (7.21)

(vj-D) = 0.523 ksi (3.61 MPa)

Ratios of Eqs. (7.21), on the it-plane, can be expressed as

2D TC

R2= 2D SS = 1.15 (7.22)

2D TC

R = = 1.43
( 2D ss

It is seen from Eqs. (7.21) and (7.22) that the predicted

ultimate envelope has the required shape, a triangular section

with rounded corner in the 7-plane.

Qd. Q'.
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7.6.4 Stress-Strain Behavior for TaSts Used for Findinq

Material Constants

Figure 7.76 shows the comparison between predicted and

constructed (knowing E and v of sandstone and based on theory

of elasticity) stress-strain response curves for hydrostatic

compression (HC) test. It is seen from Fig. 7.76 that the

prediction from model compared very well with the constructed

result.

Figures 7.77 through 7.79 show the comparison of pre-

dictions and observations for the stress-strain responses for

two compression tests (strain control test) and one extension

test (strain control test). Initial confining pressures for

compression tests are 28.45 and 56.899 ksi (196.16 and 292.

32 MPa). For the extension test, the initial confining pre-

ssure is 28.45 ksi (196.16 MPa). It is evident from Figs.

7.77 through 7.79 that the predictions from the proposed model

compare very well with experimental results.

7.6.5 Volumetric Responses Behavior

Figures 7.80 through 7.82 show the compression of pre-

G dictions and observations for c, £1 responses for two com-

pression (% = 28.45 and 56.899 ksi) tests and one extension

(Go = 28.45 ksi). It is evident from these plots that the pre-

dictions compare well with the experimental data.
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The material constants for Westerly Granite are given in

* section 6.10. The description of the Westerly Granite is pre-

sented in Chapter 6. Ultimate envelopes and strengths are

predicted and compared with the experimental results.

7.7.1 2D - Jl Plane

Figures 7.33 through 7.85 show the comparison of the pre-

dictions and observations of ultimate envelopes, in v2D -J

plane, (CTC), (SS) and (RTE) tests, respectively. It is evi-

dent from Fig. 7.83 through 7.35 that the model predictions

compare well with the experimental data.

7.7.2 Octahedral and Triaxial Planes

* Figures 7.86 and 7.37 show the comparison of the predic-

tions and observations of ultimate envelopes for octahedral

and triaxial planes, respectively. It is seen from these

Figs. that the proposed model predictions compare well with

the experimental results.

Predicted ultimate envelope 6n the 7-plane also is shown

in Fig. 7.37.

7.7.3 Strength Behavior

Based on the predicted envelope, Fig. I.37 predicted

values of the uniaxial compressive strength, fcu' equi-biaxial
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compressive strength, fcb' and uniaxial tensile, ft. can be

calculated. These predicted strengths are:

* f = 46.15 ksi (318.23 MPa)Cu

fcb = 153.66 ksi (1059,48 MPa) (7.23)

ft =-1.876 ksi (-12.94 Ma) (Compression Positive)

The values of fcu and ft compared to unconfined compression

strength, f ' and tensile strength, ft, based on tests with cy-

lindrical specimens of 0.63xi.9 7 in. (1.6x5.0 cm) and Eq. (6.46),

respectively. These values are:

f' = 42.698 ksi (294.4 MPa) (7.24)C "

f = - 1.876 ksi (-12.94 MPa) (Compression Positive)

It is evident from Eqs. (7.23) and (7.24) that the pre-

dictions compare well with the experimental results. The

differences between these predicted and observed strengths may

be attributed to effect of specimen types and boundary con-

ditions.

Based on the predicted ultimate envelope, Fig. 7.87, pre-

dicted values of the vT2D on the ri-plane for CTC (0=- 300),
20

SS (G= 00) and RTE (0= 300) can be calculated. These values

are:

(vU2D) = 3.0 ksi (20.68 MPa)CTC

4J72) = 2.0 ksi (13.79 MPa) (7.25)
2D SS
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( W D) : 1.732 ksi (11.94 MPa)
2D)RTE

Ratios of Eqs. (7.25), on the n-plane, can be expressed as

R1 _ CTC - 1.73

( vrj D) RTE

2D ss
R2  :1.15 (7.26)

(V"J2D) RTE

(v'2D)R3 -T _ 1 .50

(IT2Dl ss

It is evident from Eqs. (7.25) and (7.25) that the predicted

envelope has a triangular section with rounded corner in t-

plane.

The material constants. for Dunham Dolomite are given in

Section 6.11. The description of the Dunham Dolomite is pre-

sented in Chapter 6. Ultimate envelopes and strengths are pre-

dicted and compared with the experimental results.

7.8.1 J2D - Jl Plane

Figures 7.88 through 7.90 show the comparison of the pre-

dictions and observations of ultimate envelopes, in "12D - J1

plane, (CTC), (SS) and (RTE) tests, respectively. It is seen

from these Figs. that the proposed model predictions compare
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± well with the experimental data.

• 7.8.2 Octahedral and Triaxial Planes

Figures 7.91 and 7.92 show the comparison of the predictions

and observations of ultimate envelopes for octahedral and

* triaxial planes, respectively. It is seen from these Figs.

that the correlation between the model predictions and ob-

servations is reasonable.

Predicted ultimate envelope on the Tr-plane is shown in

Fig. 7.91.

7.8.3 Strength Behavior

Based on the predicted envelope, Fig. 7.92 predicted values

of the uniaxial compressive strength, fcu' equi-biaxial com-

pressive strength, fcb, and uniaxial tensile, ft. can be cal-

culated. These predicted strengths are:

fcu = 30.77 ksi (212.15 MPa)

f cb = 146.86 ksi (1012.6 MPa) (7.27)

ft =-1.0179 ksi (-7.018 MPa) (Compression Positive)
The values of fcu and ft compared to unconfined compression

strength, fc, and tensile strength, ft, 'ased on tests with

cylindrical specimens of 0.63xi.97 in. (1.6x5.0 cm) and Eq.

(6.47), respectively. These values are:

= 31.472 ksi (216.999 MPa) (7.28)*c

ft =- 1.0179 ksi (-7.018 'Pa) (Compression Positive)
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It is evident from Eqs. (12.27) and (12.28) that the pre-

dictions compare very well with the experimental results.

* Based on the octahedral ultimate envelope, Fig. 7.91,

predicted values of the v72D on T-plane for CTC (0=- 300),
20

SS (Q= 00) and RTE (G= 300) can be calculated. These values

* are:

JJD) = 1.177 ksi (8.115 MPa)
CTC

(=J2D)  0.762 ksi (5.254 MPa) (7.29)
~SS

(432D) : 0.656 ksi (4.523 MPa) (Compression Positive)
RTE

Ratios of Eqs. (7.29), on the i-plane, can be expressed as

R1 _ CTC = 1.794

2 RTE

(J Fo)RTR 2 _ S 1.162 (t.30)

(v RTE

2D CTC
R3 = 1 1.545

2D ss

It is evident from Eqs. (7.29) and (7.30) that the predicted

envelope has a triangular section with rounded corner in 7-

plane.
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7.9 Comments

Seven different concretes and rocks were considered for

* the verification of the proposed model. The material constants

associated with the proposed model were determined for each

concrete and rock using a number of different straight line

* stress path tests for that concrete or rock. These material

constants were used to back-predict ultimate, pre-ultimate,

strengths and the stress-strain responses of a selected num-

ber of tests for every concrete and rock. It is evident from

these back-predictions that the proposed model can represent

the responses of pressure sensitive materials such as concrete

and rock with reasonable accuracy.

i0

ILI.
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CHAPTER 8

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

8.1 Summary

In this study a series of tests were performed on plain

concrete and soapstone. The purpose of these tests was to acquire

some understanding of the constitutive behavior of plain concrete

and soapstone subjected to general and complex load histories,

and the results of these tests were used to calibrate the pro-

posed constitutive model for predicting the strength and behavior

of plain concrete and soapstone under multiaxial comoressive

loads.

The proposed model has a number of material constants.

Laboratory tests were performed to determine these naterial constants.

Besides plain concrete and soapstone, test data for Colorado plain

concrete, SFRC-UC, sandstone, Weterly Granite and Dunham Dolomite

is also used [68, 30, 56, 52, 52]. Details of the parameter deter-

* mination are given in Chapter 6. Material constants for different

concretes and rocks are given in Chapter 6. These constants are

then used to back-predict the ultimates, strengths and stress-

strain response.

8.2 Conclusions

Many conclusions are drawn from the investigation presented

herein. First of all, under multiaxial compression, the material's

375
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deformational and strength response is strongly stress path

and confining pressure dependent resulting in an ultimate

* (failure) envelope.

Appropriate constitutive laws are required to obtain rea-

sonable solutions for many problems in geomechanics. Available

* constitutive models may not adequately characterize the be-

havior of concretes and rocks. Thus, new and improved constitutive

models are necessary.

The proposed model can provide a simple and efficient way

to define continuous yielding and hardening behavior. Since

it involves only a single function to define both the ultimate

yield and pre-ultimate yielding, it is intended to be simple

compared to previously used two surface models [45, 69] that

involve two separate functions. Since the proposed yield function

is continuous, it also avoids the singularity point at the inter-

section of two functions in the previous models, thus reducina

the difficulties associated with computer implementation. The

ultimate criterion involves only four independent material

constants. The material constants can be simply determined

from simple tests such as uniaxial compression and triaxial

compression or biaxial compression tests. For the purpose of

including value of tensile strength in ultimate criterion for

frictional materials, it is necessary to include the uniaxial
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tensile strength in the material constant determination. A

simple expression for evaluation of uniaxial tensile strength

on the basis of the uniaxial compression strength is given by

Lade [48].

The proposed constitutive model provides a continuous and

convex plot in /J,, - Jl octahedral and triaxial planes, Thus, the

normal to yield surface at any point can be defined uniquely. Many

available plastic models represent the yielding process by two

separate surfaces which intersect each other with slope dis-

continuity; that is, the normal at the point of intersection is

non unique. This gives rise to difficulty when associated plas-

ticity laws are used..

The proposed model is verified with respect to the tri-

axial tests on a number of different concretes and rocks.

Ultimate, strength, stress-strain behavior and volumetric be-

havior are compared. It is seen that the proposed model provides

satisfactory predictions for observed behavior under a variety

of stress paths.

The proposed model predictions are shown in Chapter 7.

The correlation between the experimental results and analytical

predictions are very good and provide a simple ipproach For

developing constitutive models for concrete and rock.
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8.3 Recommendations for Future Work

At the time this research on concrete and rock was conducted,

the ability to determine the uniaxial tensile strength of a cubical

specimen was not possible because the cubical device used to

perform the tests employ fluid cushion compressive type loading

only. The additional equipment to apply tensile stresses to a

cubical specimen is required. Also, tests with low confining

pressure and in combined tension-compression regimes are needed

in order to elucidate the response of concrete and rock under

this type of loading.

The general polynomial function, Eq. (6.1), permits choice

of a number of approximate (truncated) forms which may be used

instead of the proposed model. Further work is necessary to es-

tablish these alternatives and to explore t'ieir capabilities

ful ly.

- A"



APPENDIX A

MULTIAXIAL TESTING 4X4X4 IN. (1O.16X1O.16XI0.16 C14)
CUBICAL SPECIMEN OF PLAIN CONCRETE AFTER TESTING
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APPENDIX B

MULTIAXIAL TESTING 4X4X4 IN. (1O.16X1O.16X1O.16 CM)
CUBICAL SPECIMEN OF SOAPSTONE AFTER TESTING
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